SCS ENGINEERS

Groundwater Monitoring Report: Fourth Quarter 2005

Schmidbauer Lumber, Inc. 1099 Waterfront Drive Eureka, California 1NHU602

File Number 01203316.00

Prepared by:

SCS Engineers 434 7th Street, Suite B Eureka, California 95501

To:

Kasey Ashley North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, California

7 March 2005

LIMITATIONS/DISCLAIMER

This report has been prepared for Schmidbauer Lumber Company, Inc. with specific application to a quarterly monitoring event for the property located at 1099 Waterfront Drive, Eureka, California (the "Site"). Field activities and sampling were conducted in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. No other warranty, either expressed or implied, is made as to the professional advice presented herein.

Access to the Property was limited by buildings, automotive traffic, underground and aboveground utilities, and other miscellaneous site features. Therefore, the field exploration and points of subsurface observation were somewhat restricted.

Changes in site use and conditions may occur due to variations in rainfall, temperature, water usage, or other factors. Additional information which was not available to the consultant at the time of this quarterly monitoring event or changes which may occur on the site or in the surrounding area may result in modification to the site that would impact the summary presented herein. This report is not a legal opinion.

We look forward to continuing to work with you on this project and trust this report provides the information you require at this time. If you have any questions or need additional information, please call SCS at 707.476.1590.

Kevin Coker

Project Scientist, REA #7887

Date

Expires 30 June 2006

Karin W. Fresnel

Certified Engineering Geologist #2264

Date

Expires 31 August 2007

KARIN W. FRESNEL

GEOLOGIST

Introduction

SCS Engineers (SCS) is pleased to present the results for the fourth quarter 2005 groundwater monitoring and sampling event at the Schmidbauer Lumber, Inc. (Schmidbauer) site located at 1099 Waterfront Drive in the City of Eureka, California. A summary of historical site investigation activities is presented in previous reports (PNEG, 1998a, 1999a, & 2001c; SCS, 2003b, 2004b, 2005a, and 2006a). The site location is as shown on the attached Site Location Map (Figure 1). General site features are as shown on the attached Site Plan (Figure 2).

Groundwater Monitoring

Depth to groundwater measurements were collected from monitoring wells MW-1, MW-2, MW-3R, MW-4, MW-5, MW-6, MW-7, MW-8D, MW-9D, MW-10, MW-11, MW-12 and MW-13 on 9 December 2005 in order to determine groundwater flow direction and gradient at the site. Depth to groundwater in the shallow wells ranged from approximately 2.03 to 4.45 feet below existing grade. The depths to groundwater in the deep wells (MW-2, MW-8D, and MW-9D) were 5.74 to 7.30 feet below existing grade. The depth to groundwater measurements and well casing elevations were used to calculate the groundwater flow direction and gradient at the Site. Casing and groundwater elevations are reported in feet relative to mean sea level. Depths to groundwater are expressed in feet. The site-wide or regional (MW-3R, MW-4, MW-5) shallow groundwater flow direction was interpolated to be west-northwest (Figure 3, and Chart 1) at a calculated gradient of 0.001. The localized (MW-1, MW-6, MW-7) shallow groundwater flow direction and gradient was interpolated to be westerly at a calculated gradient of 0.003 (Figure 4, and Chart 2). The deep flow direction (MW-2, MW-8D, MW-9D) was interpolated to be west-northwest (Figure 5 and Chart 3) at a calculated gradient of 0.03. Groundwater flow and gradient inclusive of newly installed wells MW-10, MW-11, MW-12 and MW-13 indicate south to west-southwest flow direction at an average gradient of 0.015 (Figure 6). Groundwater flow direction and gradient for this and previous monitoring events are presented in Tables 1A, 1B, and 1C (attached).

Groundwater Sampling

Monitoring wells were checked for the presence of immiscible product using an oil/water interface probe. Immiscible product was not present during this monitoring event. Wells scheduled for sampling were purged of approximately three (3) wetted well casing volumes, or at least five (5) gallons of groundwater, whichever was greater, or until the well went dry, using a submersible pump. Temperature, pH, conductivity, turbidity, and dissolved oxygen readings were measured during purging to determine that groundwater representative of aquifer conditions was entering the well casings for sampling. Wells were allowed to recover to 80 percent of static levels or for 2 hours prior to sampling. Groundwater samples were collected using a clean, disposable bailer for each well. Samples were transferred to appropriate laboratory-supplied containers for analysis. Groundwater samples were labeled, stored under refrigerated conditions, and transported under Chain-of-Custody documentation to Analytical Sciences (AS), a California Department of Health Services-certified laboratory, in Petaluma, California. All samples were collected in accordance with the SCS' Standard Soil and Water Sampling Procedures and QA/QC Protocol. Water generated during recent site investigative activities is currently stored at the site in 55-gallon UN/DOT-

Kasey Ashley 7 February 2006 Page 2

approved 17-E/H drums, pending characterization and disposal. Information related to well purging was recorded on groundwater field sampling forms. Well Purge Records are presented in Appendix A.

Laboratory Analysis

Groundwater samples collected from MW-1 through MW-13 were analyzed for chlorophenols using the Canadian Pulp Method. The Canadian Pulp Method was developed specifically to test for chlorophenols in samples with high wood sugars. This method is accepted by the North Coast Regional Water Quality Control Board (NCRWQCB) and by the Department of Toxic Substances Control DTSC. One sample from well MW-10 was analyzed for the presence of dioxins and furans by EPA Test Method 1613 D/F as requested by the NCRWQCB.

Laboratory Analytical Results

Laboratory analyses of groundwater samples from wells MW-8D, MW-9D, MW-10 and MW-11 indicated the presence of chlorophenols in groundwater. Analysis of the groundwater sample from MW-10 indicated the presence of dioxins and furans. All other groundwater samples analyzed for this monitoring event were below laboratory minimum detection limits (MDLs) for target analytes. Recent analytical results are incorporated with historical data in Tables 2 through 15 and plotted on the attached time versus concentration diagram (See Diagram A). A copy of the laboratory report is also attached (Appendix B).

Discussion

Groundwater analytical results indicated the presence of chlorophenols in groundwater samples from wells MW-10 and MW-11. Chlorophenol concentrations in these wells have declined since the initial sampling event in October 2005. These wells are proximal and downgradient from the former wood treatment area. Dioxins and furans were present in the sample from MW-10 which is located adjacent to the former wood treatment facility.

Samples from deep wells MW-8D and MW-9D contained low levels of chlorophenols. This represents the second detection of chlorophenols in these wells since installation of the wells in October 2003 and February 2004, respectively. This may be related to recent heavy rains. It should also be noted that these wells were sampled after well MW-10, where high concentrations of chlorophenols were present. Field technicians have been instructed to sample historically clean wells prior to wells where chlorophenols were noted in previous events.

A groundwater mound exists between Mill #1 and Mill #2 (Figure 2). A localized groundwater flow plate has been prepared for this area (Figure 4).

Kasey Ashley 7 February 2006 Page 3

Project Update

The next monitoring event is scheduled for March 2006.

Soil and Water Disposal

On 19 January 2006 Integrated Wastestream Management transported 4 drums of non-hazardous water to Seaport Refining & Environmental disposal facility in Redwood City, California and 3 drums of non-hazardous soil to Republic Services Vasco Road Landfill in Livermore, California. Copies of the Certificates of Disposal are presented in Appendix C.

T: ----

Attachments

rigures	
Figure 1:	Site Location Map
Figure 2:	Site Plan
Figure 3:	Groundwater Flow Direction and Gradient: Sitewide Shallow Wells (MW-3R, MW-4 & MW-5): 12/05/05
Figure 4:	Groundwater Flow Direction and Gradient: Local Shallow Wells (MW-1, MW-6, & MW-7): 12/05/05
Figure 5:	Groundwater Flow Direction and Gradient: Deep Wells (MW-2, MW-8D, MW-9D): 12/05/05
Figure 6:	Groundwater Flow Direction and Gradient: Shallow Wells: 12/05/05
Figure 7:	Pentachlorophenol in Groundwater: Shallow Wells: 12/05/05

Charts

Figure 8:

Chart 1: Windrose Diagram: Shallow Monitor Wells - 3/99 through 12/05 Chart 2: Windrose Diagram: Shallow Monitor Wells - 5/01 through 12/05 Chart 3: Windrose Diagram: Deep Monitor Wells - 3/99 through 12/05

Pentachlorophenol in Groundwater: Deep Wells: 12/05/05

Tables and Diagrams

Key and Footnotes to Diagram and Tables

Diagram A: Contaminant Concentration & Groundwater Elevation vs. Time – MW-1
Table 1A: Groundwater Flow Direction and Gradient for Shallow Wells: Site Wide
Groundwater Flow Direction and Gradient for Shallow Wells: Local (MW-1, MW-6, and MW-7 only)

Table 1C: Groundwater Flow Direction and Gradient for Deep Wells (MW-2, MW-8D, and

MW-9D)

Tables 2-15: Groundwater Analytical Results: MW-1 through MW-13
Table 16: Groundwater Analytical Results: Trihalomethanes: June 2005

Table 17: Groundwater Analytical Results: Dioxins and Furans

Appendices

Appendix A: Well Purge Records 4th Quarter Appendix B: Analytical Laboratory Reports:

Analytical Sciences Report #5120801, dated 19 December 2005

Frontier Analytical Laboratory Report #3646, dated 28 December 2005

Analytical Sciences Report #5121202, dated 12 January 2006

Appendix C: Certificate of Disposal: IWM Job # 95579-DS: dated 19 January 2006

Certificate of Disposal: IWM Job # 95589-DW: dated 19 January 2006

References

Environmental Resources Management, 1998, MW-14 Sampling Results, Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, September 4. Reactions and Movement of Organic Chemicals in Soils, Soil Science Society of America, 1989 PNEG, 1997, Work Plan for Subsurface Investigation - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, January 27. , 1998a, Report on Subsurface Investigation - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, May 22. , 1998b, Work Plan for Monitoring Well Installation - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, December 10. , 1999a, Report of Investigation - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, August 30. , 1999b, Results of the June 1999 Quarterly Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, September 14. , 1999c, Results of the September 1999 Quarterly Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, November 15. , 2000a, Results of the December 1999 Quarterly Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, March 8. _____, 2000b, Results of the March 2000 Quarterly Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, May 23. _____, 2000c, Results of the 2nd Quarter 2000 Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, July 26. , 2000d, Work Plan for Installation of Peripheral Monitoring Wells and for Feasibility Study for Site Remediation by Phytoremediation - Schmidbauer Lumber, Inc., Foot of Clark Street, Eureka, California, September 12. , 2000e, Results of the 3rd Quarter 2000 Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, October 31. , 2001a, Results of the 4th Quarter 2000 Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, January 22. , 2001b, Work Plan for Phytoremediation Pilot Study - Schmidbauer Lumber, Inc., Foot of Clark Street, Eureka, California, March 8. , 2001c, Report on Installation of Monitoring Wells - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, March 29. , 2001d, Report on Results of the 2nd Quarter 2001 Quarterly Groundwater Monitoring and Sampling Event - Schmidbauer Lumber, Inc., Foot of Clark Street, Eureka, California, July , 2001e, Results of the 3rd Quarter 2001 Groundwater Monitoring and Sampling Event -Schmidbauer Lumber, Inc., Foot of Clark Street, Eureka, California, October 29. , 2002a, Results of the 4th Quarter 2001 Groundwater Monitoring and Sampling Event -Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, January 17. , 2002b. Work Plan for Installation of Additional Deep Monitoring Wells and Additional Shallow Borings - Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, April 29.

, 2002c, Results of the 1st Quarter 2002 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, May 20.
, 2002d, Results of the 2nd Quarter 2002 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, July 3.
, 2002e, Results of the 3rd Quarter 2002 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, September 25.
, 2002f, Results of the 4th Quarter 2002 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, December 23.
, 2003a, Results of the 1st Quarter 2003 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, March 17.
, 2003b, Results of the 2nd Quarter 2003 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, June 23.
SCS, 2003a, Results of the 3rd Quarter 2003 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, September 30.
, 2003b, Results of Monitoring Well Installation and Drilling of Additional Borings -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, November 20.
, 2004a, Results of the 4 th Quarter 2003 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, January 14.
, 2004b, Results of Monitoring Well Installation and Drilling of Additional Borings (Revised,
11/20/03) and Results of Additional Deep Monitoring Well Installation - Schmidbauer
Lumber, Inc., 1099 Waterfront Drive, Eureka, California, April 12.
, 2004c, Results of the 2 nd Quarter 2004 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, July 20.
, 2004d, Correction to the Results of the 2nd Quarter 2004 Groundwater Monitoring and
Sampling Event report, dated July 20, 2004, for the Schmidbauer Lumber, Inc. site at 1099
Waterfront Drive, Eureka, California, July 29.
, 2004e, Results of the 4 th Quarter 2004 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, December 2.
, 2005a, Report of Findings: Groundwater Flow Direction Analysis and Review, Schmidbauer
Lumber, Inc., 1099 Waterfront Drive, Eureka, California.
, 2005b, Results of the 1 st Quarter 2005 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California. , 2005c, Results of the 2 nd Quarter 2005 Groundwater Monitoring and Sampling Event -
Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California.
, 2005d, Workplan: Subsurface Investigation, Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California.
, 2005e, Groundwater Monitoring Report: Third Quarter 2005 Groundwater Monitoring and
Sampling Event - Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California.
, 2006a, Report of Findings: Additional Subsurface Investigation, Schmidbauer Lumber, Inc.,
1099 Waterfront Drive. Eureka. California.
1977 Walchitch Dilve, Eulera, Califernia.

Kasey Ashley 7 February 2006 Page 7

Distribution List File No. 01203316.00

Mr. Rich Graham Schmidbauer Lumber, Inc. P.O. Box 152 Eureka, CA 95502

Mr. Mark Verhey Humboldt County Division of Environmental Health 100 H Street, Suite 100 Eureka, CA 95501

WINDROSE DIAGRAM

SHALLOW WELLS: MW-3₁, MW-3R₁, MW-4 AND MW-5

NOTES:

(1) Well MW-3 abandoned and replaced with well MW-3R.
Groundwater flows resolved with MW-3R are illustrated in red.

6/00, 9/00, 8/02 events not plotted, well MW-3 inaccessable.

S C S E N G I N E E R S Environmental consultants	SHEET TITLE: WINDROSE DIAGRAMS: SHALLOW MONITOR WELLS — 3/99 THROUGH 12/05	SCALE: (CHART-No Scale)
3645 WESTWIND BOULEVARD SANTA ROSA, CALIFORNIA 945.03 PH. (707) 946–5461 pt. (707) 544–5769	PROJECT TITLE: SCHMIDBAUER LUMBER COMPANY	CHART:
PROJ. NO. 01203316.00 DWN, BY: ACAD FILE: 1203316.00_Windrose DATE 2/28/06 CHK, BY: KWF KWF KWF	1099 WATERFRONT DRIVE EUREKA, CALIFORNIA	1

WINDROSE DIAGRAM

SHALLOW WELLS: MW-1, MW-6 AND MW-7

NOTES:

6/05 event not plotted, well MW-6 inaccessable.

S C S E N G I N E E R S ENVIRONMENTAL CONSULTANTS	SHEET TITLE: WINDROSE DIAGRAM: SHALLOW MONITOR WELLS — 5/01 THROUGH 12/05	SCALE: (CHART-No Scale)
3645 WESTWIND BOULEVARD SANTA ROSA, CALIFORNIA 94503 PH. (707) 946–5461 FAX. (707) 544–5769	PROJECT TITLE: SCHMIDBAUER LUMBER COMPANY	CHART:
PROJ. NO. 01203316.00 DWN, BY: 1203316.00 Windrose_ DATE 2/28/06 CHK, BY: KWF ACAD FILE: 1203316.00 Windrose_ CHK, BY: KWF	1099 WATERFRONT DRIVE EUREKA, CALIFORNIA	2

WINDROSE DIAGRAM

DEEP WELLS: MW-2, MW-8D AND MW-9D

S C S E N ENVIRONMENTAL			-,,	SCALE: (CHART-No Scale)
3645 WESTWIND BOULEVARD SANTA ROSA, CALIFORNIA 94503 PH. (707) 946-5461 FAX. (707) 54			PROJECT TITLE: SCHMIDBAUER LUMBER COMPANY	CHART:
PROJ. NO. 01203316.00 DATE 2/28/06	DWN. BY: JJM CHK. BY: KWF	ACAD FILE: 1203316.00_Windrose APP. BY: KWF	1099 WATERFRONT DRIVE EUREKA, CALIFORNIA	3

Key and Footnotes to Diagram and Tables 1099 Waterfront Drive, Eureka, California

Key

PCP = Pentachlorophenol

TOC = Total organic carbon

mg/kg = Milligrams per kilogram

ug/L = Micrograms per liter

mg/L = Milligrams per liter

ND = Not detected

NA = Not analyzed

NR = Not reported

NS = Not sampled

SCS ENGINEERS	Contaminant Concentration and Groundwater Elevation vs. Time - MW-1	DIAGRAM
434 7th Street, Suite B	Schmidbauer Lumber, Inc.	
EUREKA, CALIFORNIA	1099 Waterfront Drive	\mathbf{A}
PH: (707) 546-9461 FX: (707)544-5769	Eureka, California	
Drawn By: MRO File Name: Diagram-A	Job Number: 01203316.00	DATE: 03/01/06

Table 1A: Groundwater Flow Direction and Gradient for Shallow Wells: Site Wide 1099 Waterfront Drive, Eureka, California

Date	Groundwater Flow Direction (+/- 5°)	Groundwater Gradient (i=ft / ft)	Notes
03/27/99	S50°E	0.002	
06/21/99	S50°W	0.002	
09/27/99	Generally Southwest		
12/22/99	Generally Southeast		
03/16/00	S45°E	0.002	
06/09/00	Northerly	0.002	MW-3 inaccessible (covered with multiple layers of logs)
09/12/00	N15°W	0.002	MW-2 and MW-3 inaccessible (covered with multiple layers of logs / lumber)
12/13/00	S20°W	0.001	
02/06/01	Southerly	0.002	
05/16/01	Southerly to Easterly	0.002	
08/21/01	Southerly	0.004	
11/13/01	Southerly	0.003	
02/12/02	Southerly	0.001	
05/14/02	Southerly	0.003	
08/22/02	Southerly	0.002	
11/20/02	Southerly	0.002	
02/26/03	Southerly	0.002	
05/09/03	Southerly	0.002	
08/19/03	Southerly	0.003	MW-8D installed
10/28/03	Southerly	0.004	Monitoring wells were re-surveyed to msl on October 7, 2003 MW-3 abandoned and replaced with MW-3R
11/20/03	Southerly	0.002	
02/05/04	S to E	0.001	
05/24/04	Northwesterly	0.003	MW-6 and MW-7 sampled on 6/2/04 (covered by logs on 5/24/04)
09/27/04	Northwesterly	0.002	
12/02/04	West-Northwesterly	0.001	
03/09/05	North-Northwest (N40°W)	0.001	Flow and gradient calculated using MW-3R, MW-4 and MW-5 only.
06/16/05	North-Northwest (N45°W)	0.001	Flow and gradient calculated using MW-3R, MW-4 and MW-5 only.
9/14/2005	West-Northwest (N55°W)	0.001	Flow and gradient calculated using MW-3R, MW-4 and MW-5 only.
12/5/2005	West-Northwest (N45°W)	0.001	Flow and gradient calculated using MW-3R, MW-4 and MW-5 only.

Groundwater flow directions estimated to the nearest 5 degrees.

Table 1B: Groundwater Flow Direction and Gradient for Shallow Wells: Local (MW-1, MW-6 and MW-7 only) 1099 Waterfront Drive, Eureka, California

Date	Groundwater Flow Direction (+/- 5°)	Groundwater Gradient (i=ft / ft)	Notes
05/16/01	N75°W	0.001	
08/21/01	N30°E	0.001	
11/13/01	N80°W	0.004	
02/12/02	S85°W	0.001	
05/14/02	West (N90°W)	0.001	
08/22/02	S85°W	0.001	
11/20/02	N70°W	0.003	
02/26/03	N70°W	0.002	
05/09/03	N80°W	0.002	
08/19/03	S80°W	0.003	
10/28/03	S75°W	0.003	Monitoring wells were re-surveyed to msl on October 7, 2003
11/20/03	N80°W	0.006	
02/05/04	S80°W	0.001	
05/24/04	West (N90°W)	0.001	
09/27/04	S5°W	0.003	
12/02/04	N75°W	0.002	
03/09/05	N70°W	0.02	
06/16/05	NA ²	NA^2	
09/14/05	N75°W	0.003	
12/05/05	N80°W	0.003	

NA² - Not available, Well MW-6 in accessible

Groundwater flow directions estimated to the nearest 5 degrees.

Table 1C: Groundwater Flow Direction and Gradient for Deep Wells (MW-2, MW-8D, MW-9D) 1099 Waterfront Drive, Eureka, California

Date	Groundwater Flow Direction (+/- 5°)	Groundwater Gradient (ft ./ ft.)	Notes
02/05/04	S55°E	0.005	MW-9D installed (surveyed on February 17, 2004)
05/24/04	S50°E	0.003	
09/27/04	NA^3	NA^3	
12/02/04	S55°E	0.01	
03/09/05	S65°E	0.01	
06/16/05	N30°W	0.001	
09/14/05	S55°E	0.004	
12/05/05	N65°W	0.03	

NA³ - Not available, Well MW-2 inaccessible

Groundwater flow directions estimated to the nearest 5 degrees.

Table 2: Groundwater Analytical Results - MW-1 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	03/27/99	11.17	2.66	8.51	3.0	38	3,000	<90	5,500
	06/21/99	11.17	3.05	8.12	<10	95	6,100	130	8,000
	09/27/99	11.17	3.59	7.58	9.3	<100	9,900	<100	9,800
	12/22/99	11.17	3.12	8.05	<10	200	3,700	<10	5,500
	03/16/00	11.17	2.81	8.36	<1.0	<1.0	730	<1.0	2,500
	06/09/00	11.17	3.18	7.99	1.0	<1.0	900	<1.0	3,300
	09/12/00	11.17	3.53	7.64	<1.0	18	300	22	1,100
	12/13/00	11.17	3.22	7.95	<1.0	<1.0	470	<1.0	1,600
	02/06/01	11.17	3.15	8.02	15 ¹	28	3 ²	<1.0	73
	05/16/01	11.17	3.21	7.96	<1.0	<1.0	<1.0	<1.0	55
	08/21/01	11.17	3.66	7.51	<1.0	<1.0	32	1.4	100
	11/13/01	11.17	3.46	7.71	NR	8.	1 ²	1.3	16
	02/12/02	11.17	2.92	8.25	<1.0	<1.0	<1.0	<1.0	<1.0
	05/14/02	11.17	3.04	8.13	<1.0	<1.0	<1.0	<1.0	1.4
MW-1	08/22/02	11.17	3.48	7.69	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	11.17	3.48	7.69	<1.0	<1.0	<1.0	<1.0	<1.0
	02/26/03	11.17	2.81	8.36	<1.0	<1.0	<1.0	<1.0	<1.0
	05/09/03	11.17	2.67	8.5	<1.0	<1.0	<1.0	<1.0	<1.0
	08/19/03	11.17	3.16	8.01	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	11.17	3.24	7.93	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/03	11.17	3.06	8.11	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	11.17	2.68	8.49	<1.0	<1.0	<1.0	<1.0	<1.0
	05/24/04	11.17	2.92	8.25	<1.0	<1.0	<1.0	<1.0	<1.0
	09/27/04	11.17	3.27	7.90	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	11.17	3.22	7.95	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/04	11.17	3.57	7.60	<1.0	<1.0	<1.0	<1.0	<1.0
	06/16/05	11.17	3.11	8.06	<1.0	<1.0	<1.0	<1.0	<1.0
	09/14/05	11.17	3.65	7.52	<1.0	<1.0	<1.0	<1.0	<1.0
	12/05/05	11.17	2.98	8.19	<1.0	<1.0	<1.0	<1.0	<1.0

NR - Not Reported

^{1 -} Analytical method yields total trichlorophenols as conducted by Analytical Sciences

^{2 -} Co-elution

Table 3: Groundwater Analytical Results - MW-2 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	03/27/99	10.53	6.05	4.48	< 0.1	0.88	16	< 0.1	35
	06/21/99	10.53	6.64	3.89	< 0.1	0.97	24	0.66	62
	09/27/99	10.53	7.61	2.92	<1.0	<1.0	<1.0	<1.0	<1.0
	12/22/99	10.53	5.89	4.64	<1.0	<1.0	3.8	<1.0	16
	03/16/00	10.53	6.05	4.48	<1.0	<1.0	<1.0	<1.0	<1.0
	06/08/00	10.53	7.49	3.04	<1.0	<1.0	<1.0	<1.0	<1.0
	09/12/00	10.53			Inaccessib	le, covered by multipl	e layers of logs/lumbe		
	12/13/00	10.53	6.36	4.17	<1.0	<1.0	<1.0	<1.0	<1.0
	02/06/01	10.53	6.25	4.28	<1.0 1	<1		<1.0	<1.0
	05/16/01	10.53	6.60	3.93	<1.0	<1.0	<1.0	<1.0	<1.0
	8/21/01 3	10.53	7.52	3.01	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.53	6.01	4.52	NA	NA	NA	<1.0	<1.0
	02/12/02	10.53	6.12	4.41	NA	NA	NA	NA	NA
	05/14/02	10.53	7.53	3.00	<1.0	<1.0	<1.0	<1.0	<1.0
MW-2	08/22/02	10.53			Inaccessib	le, covered by multipl	e layers of logs/lumbe	er	
	11/20/02	10.53	6.13	4.40	<1.0	<1.0	<1.0	<1.0	<1.0
	02/26/03	10.53	5.30	5.23	NA	NA	NA	NA	NA
	05/09/03	10.53	6.07	4.46	<1.0	<1.0	<1.0	<1.0	<1.0
	08/19/03	10.53	6.53	4.00	NA	NA	NA	NA	NA
	10/28/03	10.53	5.70	4.83	NA	NA	NA	NA	NA
	11/20/03	10.53	6.12	4.41	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	10.53	5.49	5.04	NA	NA	NA	NA	NA
	05/24/04	10.53	7.12	3.41	<1.0	<1.0	<1.0	<1.0	<1.0
	09/27/04	10.53				Not sample	d ⁷		
	12/02/04	10.53	5.94	4.59	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/05	10.53	6.20	4.33	<1.0	<1.0	<1.0	<1.0	<1.0
	06/16/05	10.53	6.65	3.88	<1.0	<1.0	<1.0	<1.0	<1.0
	09/14/05	10.53	6.58	3.95	NS	NS	NS	NS	NS
	12/05/05	10.53	5.74	4.79	<1.0	<1.0	<1.0	<1.0	<1.0

- 1 Analytical method yields total trichlorophenols as conducted by Analytical Sciences
- 2 Co-elution
- 7 Well inaccessible.
- NA Not Analyzed
- NR Not Reported
- NS Not Sampled

Table 4: Groundwater Analytical Results - MW-3 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)					
	03/27/99	7.82	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1					
	06/21/99	3.50	< 0.1	< 0.1	< 0.1	< 0.1	0.31					
	09/27/99	6.65	<1.0	<1.0	16	<1.0	0.31					
	12/22/99	7.50	<1.0	<1.0	<1.0	<1.0	<1.0					
	03/16/00	7.85	<1.0	<1.0	<1.0	<1.0	<1.0					
	06/08/00		Inaccessible; Well covered by multiple layers of logs/lumber									
	09/12/00		Inacce	essible; Well covered	by multiple layers of	logs/lumber						
	12/13/00	7.65	<1.0	<1.0	<1.0	<1.0	<1.0					
	02/06/01	7.48	<1.0	<1	.0 2	<1.0	<1.0					
MW-3	5/16/01 4	7.43	NA	NA	NA	NA	NA					
101 00 -3	08/21/01	6.88	<1.0	<1.0	<1.0	<1.0	<1.0					
	11/13/01	7.01	NA	NA	NA	NA	NA					
	02/12/02	7.55	NA	NA	NA	NA	NA					
	05/14/02	7.38	NA	NA	NA	NA	NA					
	08/22/02	Inaccessible; Well covered by multiple layers of logs/lumber										
	11/20/02	7.18	NA	NA	NA	NA	NA					
	02/26/03	7.82	NA	NA	NA	NA	NA					
	05/09/03	7.96	NA	NA	NA	NA	NA					
	08/19/03	7.14	<1.0	<1.0	<1.0	<1.0	<1.0					
	10/28/03		Well	Abandoned September	er 2003 and replaced	by MW-3R						

^{2 -} Co-elution

^{4 -} Well converted to annual sampling program per 3/15/01 NCRWQCB letter

Table 5: Groundwater Analytical Results - MW-3R 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	10/28/03 4	10.49	3.22	7.27	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/03	10.49	2.83	7.66	NA	NA	NA	NA	NA
	02/05/04	10.49	2.24	8.25	NA	NA	NA	NA	NA
	05/24/04	10.49	2.46	8.03	NA	NA	NA	NA	NA
MW-3R	09/27/04	10.49	2.84	7.65	<1.0	<1.0	<1.0	<1.0	<1.0
IVI W - 3IX	12/02/04	10.49	2.69	7.80	NA	NA	NA	NA	NA
	03/09/05	10.49	2.50	7.99	NA	NA	NA	NA	NA
	06/16/05	10.49	2.50	7.99	<1.0	<1.0	<1.0	<1.0	<1.0
	09/14/05	10.49	3.04	7.45	<1.0	<1.0	<1.0	<1.0	<1.0
	12/05/05	10.49	2.41	8.08	<1.0	<1.0	<1.0	<1.0	<1.0

Footnotes
4 - Well converted to annual sampling program per 3/15/01 NCRWQCB letter

Table 6: Groundwater Analytical Results - MW-4 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	03/27/99	10.06	2.14	7.92	< 0.1	< 0.1	0.12	< 0.1	0.3
	06/21/99	10.06	2.28	7.78	< 0.1	0.21	1.2	< 0.1	3.0
	09/27/99	10.06	2.53	7.53	<1.0	<1.0	<1.0	<1.0	<1.0
	12/22/99	10.06	2.29	7.77	<1.0	<1.0	<1.0	<1.0	<1.0
	03/16/00	10.06	2.01	8.05	<1.0	<1.0	<1.0	<1.0	<1.0
	06/09/00	10.06	2.28	7.78	<1.0	<1.0	<1.0	<1.0	<1.0
	09/12/00	10.06	2.45	7.61	<1.0	<1.0	<1.0	<1.0	1.8
	12/13/00	10.06	2.10	7.96	NA	NA	NA	NA	NA
	02/06/01	10.06	2.09	7.97	<1.0 1	<1	.0 2	<1.0	<1.0
	5/16/01 4	10.06	2.70	7.36	NA	NA	NA	NA	NA
	08/21/01	10.06	2.51	7.55	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.06	2.09	7.97	NA	NA	NA	NA	NA
	02/12/02	10.06	1.87	8.19	NA	NA	NA	NA	NA
	05/14/02	10.06	2.15	7.91	NA	NA	NA	NA	NA
MW-4	08/22/02	10.06	2.00	8.06	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	10.06	2.36	7.70	NA	NA	NA	NA	NA
	02/26/03	10.06	1.99	8.07	NA	NA	NA	NA	NA
	05/09/03	10.06	1.86	8.20	NA	NA	NA	NA	NA
	08/19/03	10.06	2.15	7.91	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	10.06	2.00	8.06	NA	NA	NA	NA	NA
	11/20/03	10.06	1.92	8.14	NA	NA	NA	NA	NA
	02/05/04	10.06	1.91	8.15	NA	NA	NA	NA	NA
	05/24/04	10.06	2.03	8.03	NA	NA	NA	NA	NA
	09/27/04	10.06	2.27	7.79	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	10.06	2.27	7.79	NA	NA	NA	NA	NA
	03/09/05	10.06	2.13	7.93	NA	NA	NA	NA	NA
	06/16/05	10.06	2.11	7.95	<1.0	<1.0	<1.0	<1.0	<1.0
	09/14/05	10.06	2.59	7.47	<1.0	<1.0	<1.0	<1.0	<1.0
	12/05/05	10.06	2.03	8.03	<1.0	<1.0	<1.0	<1.0	<1.0

^{2 -} Co-elution

^{4 -} Well converted to annual sampling program per 3/15/01 NCRWQCB letter

Table 7: Groundwater Analytical Results - MW-5 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	03/27/99	10.03	1.43	8.60	< 0.1	< 0.1	< 0.1	< 0.1	0.14
	06/21/99	10.03	2.81	7.22	< 0.1	< 0.1	0.38	< 0.1	1
	09/27/99	10.03	3.19	6.84	<1.0	<1.0	<1.0	<1.0	<1.0
	12/22/99	10.03	2.30	7.73	<1.0	<1.0	<1.0	<1.0	<1.0
	03/16/00	10.03	1.15	8.88	<1.0	<1.0	<1.0	<1.0	<1.0
	06/09/00	10.03	2.31	7.72	<1.0	<1.0	<1.0	<1.0	<1.0
	09/12/00	10.03	3.18	6.85	<1.0	<1.0	<1.0	<1.0	<1.0
	12/13/00	10.03	2.24	7.79	<1.0	<1.0	<1.0	<1.0	<1.0
	02/06/01	10.03	2.33	7.70	<1.0 1	<1	.0 2	<1.0	<1.0
	5/16/014	10.03	2.33	7.70	NA	NA	NA	NA	NA
	08/21/01	10.03	3.24	6.79	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.03	1.90	8.13	NA	NA	NA	NA	NA
	02/12/02	10.03	2.14	7.89	NA	NA	NA	NA	NA
	05/14/02	10.03	2.65	7.38	NA	NA	NA	NA	NA
MW-5	08/22/02	10.03	3.10	6.93	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	10.03	2.74	7.29	NA	NA	NA	NA	NA
	02/26/03	10.03	2.09	7.94	NA	NA	NA	NA	NA
	05/09/03		1.77	8.26	NA	NA	NA	NA	NA
	08/19/03	10.03	2.66	7.37	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	10.03	2.54	7.49	NA	NA	NA	NA	NA
	11/20/03	10.03	1.92	8.11	NA	NA	NA	NA	NA
	02/05/04	10.03	1.65	8.38	NA	NA	NA	NA	NA
	05/24/04		2.43	7.60	NA	NA	NA	NA	NA
	09/27/04	10.03	2.74	7.29	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	10.03	2.38	7.65	NA	NA	NA	NA	NA
	03/09/05	10.03	2.35	7.68	NA	NA	NA	NA	NA
	06/16/05	10.03	2.50	7.53	<1.0	<1.0	<1.0	<1.0	<1.0
	09/14/05	10.03	3.08	6.95	<1.0	<1.0	<1.0	<1.0	<1.0
	12/05/05	10.03	2.49	7.54	<1.0	<1.0	<1.0	<1.0	<1.0

^{1 -} Analytical method yields total trichlorophenols as conducted by Analytical Sciences

^{2 -} Co-elution

^{4 -} Well converted to annual sampling program per 3/15/01 NCRWQCB letter

Table 8: Groundwater Analytical Results - MW-6 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	02/06/01	10.71	2.75	7.96	4.5	<1	.0 2	<1.0	<1.0
	05/16/01	10.71	2.71	8.00	<1.0	<1.0	<1.0	<1.0	6.1
	08/21/01	10.71	3.24	7.47	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.71	2.87	7.84	NR	<1	.0 2	<1.0	<1.0
	02/12/02	10.71	2.41	8.30	<1.0	<1.0	<1.0	<1.0	<1.0
	05/14/02	10.71	2.51	8.20	<1.0	<1.0	<1.0	<1.0	<1.0
	08/22/02	10.71	2.98	7.73	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	10.71	2.96	7.75	<1.0	<1.0	<1.0	<1.0	<1.0
	02/26/03	10.71	2.31	8.40	<1.0	<1.0	<1.0	<1.0	<1.0
	05/09/03	10.71	2.16	8.55	<1.0	<1.0	<1.0	<1.0	<1.0
MW-6	08/19/03	10.71	2.59	8.12	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	10.71	2.67	8.04	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/03	10.71	2.49	8.22	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	10.71	2.18	8.53	<1.0	<1.0	<1.0	<1.0	<1.0
	06/02/04 6	10.71	2.38	8.33	<1.0	<1.0	<1.0	<1.0	<1.0
	09/27/04	10.71	2.74	7.97	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	10.71	2.70	8.01	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/05	10.71	2.56	8.15	<1.0	<1.0	<1.0	<1.0	<1.0
	06/16/05	10.71	NM	NM	NA	NA	NA	NA	NA
	09/14/05	10.71	3.11	7.60	<1.0	<1.0	<1.0	<1.0	<1.0
	12/05/05	10.71	2.42	8.29	<1.0	<1.0	<1.0	<1.0	<1.0

2 - Co-elution

6 - Wells inaccessible 5/27/04. Depth to water measured 6/2/04

NA - Not Analyzed

NM - Not Measured

Table 9: Groundwater Analytical Results - MW-7 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	02/06/01	10.76	2.79	7.97	<1.0	<1.0 ²		<1.0	<1.0 5
	05/16/01	10.76	2.78	7.98	<1.0	<1.0	<1.0	<1.0	<1.0
	08/21/01	10.76	3.19	7.57	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.76	3.10	7.66	NR	<1	.02	<1.0	<1.0
	02/12/02	10.76	2.52	8.24	<1.0	<1.0	<1.0	<1.0	<1.0
	05/14/02	10.76	2.63	8.13	<1.0	<1.0	<1.0	<1.0	<1.0
	08/22/02	10.76	3.06	7.70	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	10.76	3.03	7.73	<1.0	<1.0	<1.0	<1.0	<1.0
	02/26/03	10.76	2.37	8.39	<1.0	<1.0	<1.0	<1.0	<1.0
	05/09/03	10.76	2.24	8.52	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	08/19/03	10.76	2.79	7.97	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	10.76	2.89	7.87	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/03	10.76	2.69	8.07	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	10.76	2.29	8.47	<1.0	<1.0	<1.0	<1.0	<1.0
	06/02/04 6	10.76	2.50	8.26	<1.0	<1.0	<1.0	<1.0	<1.0
	09/27/04	10.76	2.86	7.90	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	10.76	2.79	7.97	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/05	10.76	2.62	8.14	<1.0	<1.0	<1.0	<1.0	<1.0
	06/16/05	10.76	2.64	8.12	<1.0	<1.0	<1.0	<1.0	<1.0
	09/14/05	10.76	3.19	7.57	<1.0	<1.0	<1.0	<1.0	<1.0
	12/05/05	10.76	2.52	8.24	<1.0	<1.0	<1.0	<1.0	<1.0

- 2 Co-elution
- 5 Laboratory reports presence of pentachlorophenol below normal laboratory reporting limits
- 6 Wells inaccessible 5/27/04. Depth to water measured 6/2/04

NR - Not Reported

Table 10: Groundwater Analytical Results - MW-8D 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	Trichlorophenol	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (µg/L)
	10/28/03	11.15	6.13	5.02	NA	<1.0	<1	.5 ²	<1.0	6.6
	11/20/03	11.15	6.57	4.58	NA	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	11.15	5.96	5.19	NA	<1.0	<1.0	<1.0	<1.0	<1.0
	05/24/04	11.15	7.63	3.52	NA	<1.0	<1.0	<1.0	<1.0	<1.0
MW-8D	09/27/04	11.15	6.88	4.27	NA	<1.0	<1.0	<1.0	<1.0	<1.0
IVI W -0D	12/02/04	11.15	6.42	4.73	NA	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/05	11.15	6.72	4.43	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	06/16/05	11.15	7.25	3.90	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	09/14/05	11.15	7.08	4.07	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/05/05	11.15	7.30	3.85	1.0	<1.0	<1.0	<1.0	<1.0	4.6

Table 11: Groundwater Analytical Results - MW-9D 1099 Waterfront Drive, Eureka, California

Well ID	Sample Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	Trichlorophenol	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (µg/L)
	02/05/04	11.01	5.86	5.15	NA	<1.0	<1.0	1.9	<1.0	12
	05/24/04	11.01	7.53	3.48	NA	<1.0	<1.0	<1.0	<1.0	<1.0
	09/27/04	11.01	6.78	4.23	NA	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9D	12/02/04	11.01	6.32	4.69	NA	<1.0	<1.0	<1.0	<1.0	<1.0
IVI W - JD	03/09/05	11.01	6.75	4.26	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	06/16/05	11.01	7.09	3.92	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	09/14/05	11.01	6.98	4.03	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	12/05/05	11.01	7.01	4.00	1.5	<1.0	<1.0	1.8	<1.0	10

Footnotes

2 - Co-elution NA - Not Analyzed

NR - Not Reported

Table 12: Groundwater Analytical Results - MW-10 1099 Waterfront Drive, Eureka, California

Well ID Number	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6-Trichlorophenol (μg/l)	2,4,5-Trichlorophenol (μg/l)	2,3,4-Trichlorophenol (μg/l)	2,3,5,6- Tetrachlorophenol (μg/l)	2,3,4,6-Tetrachlorophenol (μg/l)	2,3,4,5-Tetrachlorophenol (µg/l)	Pentachlorophenol (µg/l)
MW-10	10/13/05	11.37	4.08	7.29	<10	<10	<10	<10	560	<10	3,600
IVI VV - 1 O	12/09/05	11.37	3.85	7.52	6.0	130	<1.0	<1.0	290	10	1,600

Table 13: Groundwater Analytical Results - MW-11 1099 Waterfront Drive, Eureka, California

Well ID Number	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6-Trichlorophenol (μg/l)	2,4,5-Trichlorophenol (μg/l)	2,3,4-Trichlorophenol (μg/l)	2,3,5,6- Tetrachlorophenol (μg/l)	2,3,4,6-Tetrachlorophenol (µg/l)	2,3,4,5-Tetrachlorophenol (μg/l)	Pentachlorophenol (µg/l)
MW-11	10/13/05	11.01	4.15	6.86	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.0
IVI VV - I I	12/05/05	11.01	4.03	6.98	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.7

Table 14: Groundwater Analytical Results - MW-12 1099 Waterfront Drive, Eureka, California

Well ID Number	Date	Top of Casing Elevation (ft>msl)	Denth to	Water Level Elevation (feet > msl)	2,4,6-Trichlorophenol (μg/l)	2,4,5-Trichlorophenol (μg/l)	2,3,4-Trichlorophenol (μg/l)	2,3,5,6- Tetrachlorophenol (μg/l)	2,3,4,6-Tetrachlorophenol (μg/l)	2,3,4,5-Tetrachlorophenol (μg/l)	Pentachlorophenol (µg/l)
MW-12	10/13/05	11.48	3.86	7.62	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
IVI VV - 1 Z	12/05/05	11.48	3.62	7.86	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Table 15: Groundwater Analytical Results - MW-13 1099 Waterfront Drive, Eureka, California

Well ID Number	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6-Trichlorophenol (μg/l)	2,4,5-Trichlorophenol (μg/l)	2,3,4-Trichlorophenol (μg/l)	2,3,5,6- Tetrachlorophenol (μg/l)	2,3,4,6-Tetrachlorophenol (µg/l)	2,3,4,5-Tetrachlorophenol (µg/l)	Pentachlorophenol (µg/l)
MW-13	10/13/05	11.10	6.85	4.25	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
IVI VV -13	12/05/05	11.10	4.45	6.65	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Table 16: Groundwater Analytical Results - Trihalomethanes: June 2005 1099 Waterfront Drive, Eureka, California

Sample Date	Well ID	Chloroform	Dibromodichloromethane	Dibromochloromethane	Bromoform
	MW-1	<1.0	<1.0	<1.0	<1.0
	MW-2	<1.0	<1.0	<1.0	<1.0
	MW-3R	<1.0	<1.0	<1.0	<1.0
	MW-4	<1.0	<1.0	<1.0	<1.0
06/16/05	MW-5	<1.0	<1.0	<1.0	<1.0
	MW-6	NA	NA	NA	NA
	MW-7	<1.0	<1.0	<1.0	<1.0
	MW-8D	<1.0	<1.0	<1.0	<1.0
	MW-9D	<1.0	<1.0	<1.0	<1.0

Footnotes

NA - Not Analyzed

Table 17: Groundwater Analytical Results - Dioxins and Furans 1099 Waterfront Drive, Eureka California

Well ID Number	Sample Date	Acronym	Analyte Name	Toxic Equivalency Factor (1998)	Detection (pg/L)	Toxic Equivancy Quotient
			2,3,7,8-Tetrachlorodibenzo-p-dioxin	1	0.00	0.0000
		1,2,3,7,8-PeCDD	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	1	23.2 8	23.2000
		1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.1	1850	185.0000
		1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.1	20900	2090.0000
		1,2,3,7,8,9-HxCDD	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.1	4970	497.0000
		1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.01	279000	2790.0000
		OCDD	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.0001	88000	8.8000
		2,3,7,8-TCDF	2,3,7,8-Tetrachlorodibenzofuran	0.1	0.00	0.0000
MW-10	12/09/05	1,2,3,7,8-PeCDF	1,2,3,7,8-Pentachlorodibenzofuran	0.05	15.70 ⁸	0.7850
IVI VV - I O	12/09/03	2,3,4,7,8-PeCDF	2,3,4,7,8-Pentachlorodibenzofuran	0.5	5.66 8	2.8300
		1,2,3,4,7,8-HxCDF	1,2,3,4,7,8-Hexachlorodibenzofuran	0.1	16.90 ⁸	1.6900
		1,2,3,6,7,8-HxCDF	1,2,3,6,7,8-Hexachlorodibenzofuran	0.1	17.60 ⁸	1.7600
		2,3,4,6,7,8-HxCDF	2,3,4,6,7,8-Hexachlorodibenzofuran	0.1	29.40 8	2.9400
		1,2,3,7,8,9-HxCDF	1,2,3,7,8,9-Hexachlorodibenzofuran	0.1	89.00	8.9000
		1,2,3,4,6,7,8-HpCDF	1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.01	2410.00	24.1000
		1,2,3,4,7,8,9-HpCDF	1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.01	54.20	0.5420
		OCDF	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.0001	7300.00	0.7300
		Total TEQ				5638.2770

Footnotes

^{8 -} Laboratory reported analyte concentration is below calibration range

Appendix A Well Purge Records 4th Quarter

	S E N	I G I N	NEEF	RS		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW-1
PROJECT	c	'ah waidh au	T h	_		JOB NUMBE		SITE	Vataufuan 1		RECORDED BY
		ecnmiadau	er Lumbe	r			3316.00		Vaterfront		Bruce Taverner
HAND PUI SUBMERS BAILER OTHER	MP SIBLE PUMP	MET	GING CHOD	SAMPLIN METHOL		(±10%), (n. wells), unto or until dry. er interface				s (or 5 gallons minimu cond.) have stabilized
CASING	DIAMETER	(D _c): 4.0)			DATE OF	SAMPLING:			1	2/5/2005
DEPTH 1		(=0)-	_	\rightarrow D _C	GPOLIND						Clear/cold
WATE		2.9	8 🔻	<u> </u> 54.	GROUND SURFACE	'[WATER LEV	/ELS EROM			.98 / 2.98
NAPL:		n.a	* -0.32								9.96
NAPI TH	ICKNESS:	n.a			}		WELL DEPT				
SCREEN				h	H		OLUME (3 C				.1 gallons
TOP:	DEF III.	3.0)		TD_{c}	DEPTH T	O WATER FO	OR 80% REC	CHARGE:	4.321	ft. below TOC
ВОТТО	JW.	10.		<u> </u>	<u> </u>	TIME OF	SAMPLING:				09:15
					SCREEN	DEPTH T	O WATER A	T TIME OF S	AMPLING:	3.081	ft. below TOC
	EPTH (TD _c		<u> </u>	1	INTERVAL (7.0 ft.)	APPEARANCE OF SAMPLE:					ghtly cloudy
	n (inches) : De	,				LABORA	TORY:			Analy	tical Sciences
	NG VOLUME 3.14 (D _c / 2) ²]		4.37 gallor	ns	•	SEE CHA	IN OF CUST	ODY FORM I	OR ANALY	TICAL INFOR	RMATION.
	PURGIN	G DATA			JLATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
12/5/05	09:05	09:06	1	1	0.23	7.70	0.465	142	13.2	1.62	
12/5/05	09:06	09:07	2	3	0.69	7.58	0.426	145	13.6	1.57	
12/5/05	09:07	09:08	2	5	1.14	7.55	0.420	117	14.0	1.89	
12/5/05	09:08	09:09	2	7	1.60	7.55	0.404	67	14.0	1.12	
						1					
						1					
				I	1	I	1		l	1	<u> </u>

	S E N	I G I I	NEEF	RS		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW- 2
PROJECT	c	_ !	T l			JOB NUMBE		SITE	V-4C		RECORDED BY
			er Lumbe	r			3316.00		Vaterfront		Bruce Taverner
HAND PUI SUBMERS BAILER OTHER	MP SIBLE PUMP	MET	GING CHOD	SAMPLIN METHOL) 	REMARKS	n. wells), und or until dry. er interface				s (or 5 gallons m inimu cond.) have stabilized
	DIAMETER	(D _c): 2.0)			DATE OF	SAMPLING:			1	2/5/2005
DEPTH 1		(26)		\rightarrow D_C		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					Clear/cold
WATE		5.7	4 🔻	<u> </u>	SURFACE (E)		WATER LEV	/ELS EDOM			5.74 / 5.74
NAPL:	, ,	n.a	* 0.47	▼ □							
	ICKNESS:	n.a	-0.47				WELL DEPT				19.71
SCREEN				h	Н	PURGE \	OLUME (3 C	ASING VOLU	JMES):	6.	8 gallons
TOP:	DEPIN.	15.	0		TD_{c}	DEPTH T	O WATER F	OR 80% REC	CHARGE:	8.50	ft. below TOC
BOTT	ΔM·	20.		¥ ¥		TIME OF	SAMPLING:				17:40
		-				DEPTH TO WATER AT TIME OF SAMPLING:					ft. below TOC
	EPTH (TD _c		00	<u> </u>	SCREEN INTERVAL (5.0 ft.)	APPEAR	ANCE OF SAI	MPLE:			Clear
Diameters i	n (inches) : De	epths in (feet)			(3.011.)	LABORA	TORY:			Analy	tical Sciences
	NG VOLUME 3.14 (D _C / 2) ²]		2.25 gallor	ns	·	SEE CHA	IN OF CUST	ODY FORM F	OR ANALY	TICAL INFO	RMATION.
	PURGIN	IG DATA			JLATIVE REMOVED		WATER	CHARACTE	RISTICS		COMMENTS
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
12/5/05	17:22	17:23	1	1	0.44	7.45	1.910	96	13.2	1.46	
12/5/05	17:23	17:24	2	3	1.33	7.60	2.020	36	13.8	1.51	
12/5/05	17:24	17:26	2	5	2.22	7.62	2.030	32	13.8	2.07	
12/5/05	17:26	17:28	2	7	3.11	7.61	2.040	10	13.8	2.05	
					+	1				1	
					-	 					
										1	

SEN	IGIN	NEEF	R S		20	005 - 4th Qu	ıarter	RD		WELL NUMBER MW- 3R
5	Schmidbau	ıer Lumbe	r					Vaterfront		RECORDED BY Bruce Taverner
JMP RSIBLE PUMP		THOD			for 2" dia (±10%), o	n. wells), unt or until dry.	til water pa	rameters (pH, temp., o	s (or 5 gallons minimu cond.) have stabilized
TO: ER (h): :: HICKNESS: N DEPTH: TOM: DEPTH (TDc in (inches): De	2.4 n.a n.a 3.0 13. 13.0 epths in (feet)	1 * -0.25 * 0 0 0	h h	GROUND (FM. SURFACE (FM. SURFAC	WEATHE TAGGED TAGGED PURGE \ DEPTH T TIME OF DEPTH T APPEAR LABORA	ER: WATER LEV WELL DEPT OLUME (3 C) O WATER FO SAMPLING: O WATER AT ANCE OF SAM TORY:	TH FROM TO ASING VOLU OR 80% REC T TIME OF S MPLE:	JMES): CHARGE: AMPLING:	5. 4.48 f 2.55 f Analy	2/5/2005 Clear/cold .41 / 2.41 12.75 1 gallons ft. below TOC 09:45 ft. below TOC Cloudy tical Sciences RMATION.
PURGING DATA TOTAL REMOV TIME WATER REMOVED (GAL) GAL CASI VOLUI					рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
09:40	09:41	1	1	0.59	7.54	0.268	481	11.5	2.16	
09:41	09:42	2	3	1.78	7.36	0.238	115	12.4	1.91	
09:42	09:43	2.5	5.5	3.26	7,49	2.490	40	12.6	2.98	
	SIBLE PUMP BIBLE PUMP BIBLE PUMP BIBLE PUMP BIBLE PUMP BIBLE PUMP COM: TO: TOM: DEPTH (TDc in (inches) : De SING VOLUME [3.14 (Dc / 2)²] PURGIN TIM BEGIN 09:40	Schmidbau PUR MET	Schmidbauer Lumber PURGING METHOD JMP X ISIBLE PUMP X S DIAMETER (D _c): 2.0 2.0 TO: ER (h): 1.0.25 2.41 1.0.25 HICKNESS: n.a.* N DEPTH: 3.0 TOM: 13.0 13.0 DEPTH (TD _c): 13.00 13.00 in (inches): Depths in (feet) SING VOLUME: [3.14 (D _c / 2) ²] [7.48 gal/ft²]: 1.69 gallor PURGING DATA TIME REMOVED (GAL) BEGIN FINISH WATER REMOVED (GAL) 09:40 09:41 1 1 09:41 09:42 2 2	METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD X X SIBLE PUMP X X TO: ER (h): 2.41 n.a.* n.a.* N DEPTH: 3.0 TOM: 13.00 in (inches): Depths in (feet) SING VOLUME: [3.14 (D _c / 2)²] [7.48 gal/ft³]: 1.69 gallons PURGING DATA TIME BEGIN FINISH WATER REMOVED GAL GAL 09:40 09:41 1 1 1 1 1 1 1 1 1 1 1 1	Schmidbauer Lumber PURGING SAMPLING METHOD	Schmidbauer Lumber	Schmidbauer Lumber	Schmidbauer Lumber	Schmidbauer Lumber	Schmidbauer Lumber

	SEN	I G I I	NEEF	R S		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW- 4
PROJECT	S	Schmidbau	ier Lumbe	r		JOB NUMBER 01203	R 3 316.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner
HAND PUI SUBMERS BAILER OTHER	MP SIBLE PUMP		GING CHOD	SAMPLIN METHOL		(±10%), o	n. wells), unt or until dry. er interface	til water pa	rameters ()	pH, temp., c	s (or 5 gallons m inimum cond.) have stabilized MLE = Meter Limit
DEPTH 1 WATE NAPL: NAPL TH SCREEN TOP: BOTTO TOTAL D Diameters i	R (h): IICKNESS: DEPTH:	2.0 n.a n.a 3.0 10. 10.cepths in (feet)	3 * -0.22 *		GROUND (FM) SURFACE H TD _C SCREEN INTERVAL (7.0 ft.)	WEATHE TAGGED TAGGED PURGE V DEPTH T TIME OF DEPTH T APPEARA LABORAT	WATER LEV WELL DEPT OLUME (3 C. O WATER FO SAMPLING: O WATER A'	TH FROM TO ASING VOLU OR 80% REC T TIME OF S MPLE:	C:	3. 3.58 f 2.10 f Analyti	2/5/2005 Clear/cold .03 / 2.03 8.6 8 gallons it. below TOC 10:30 it. below TOC Cloudy tical Sciences RMATION.
DATE	PURGING DATA CUMULATIVE TOTAL REMOVED TIME BEGIN FINISH CASING VOLUME WATER REMOVED (GAL) GAL CASING VOLUME					рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
12/5/05	10:15	10:16	1	1	0.79	7.37	0.576	*MLE	11.3	8.28	
12/5/05	10:16	10:17	2	3	2.37	7.46	0.565	*MLE	10.2	4.04	
12/5/05	10:17	10:18			3.95	7.47	0.580	702	11.7	2.63	Well dry
<u> </u>											

	S E N	IGIN	NEEF	RS		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW- 5
PROJECT	c	ahmidhau	er Lumbe			JOB NUMBE	R 3 16.00	SITE 1000 X	Vaterfront		RECORDED BY Bruce Taverner
HAND PUN SUBMERS BAILER OTHER	MP IBLE PUMP	<i>MET</i>	GING 'HOD X	SAMPLIN METHOL) 	(±10%), (a. wells), untor until dry.				s (or 5 gallons m inimu cond.) have stabilized
	DIAMETER	(D _c): 2.0)			DATE OF	SAMPLING:			1	2/5/2005
DEPTH T		(20)		\rightarrow D_{C}	CROUND.						Clear/cold
WATE		2.4	9 🔻	<u> </u> 54.	GROUND (FM)	'[WATER LEV	/ELS EROM			.10 / 2.10
NAPL:		n.a	* -0.31				WELL DEPT				9.5
NAPL TH	ICKNESS:	n.a								2	
SCREEN	DEPTH:			h	H		OLUME (3 C				5 gallons
TOP:		3.0)	4	TD_{c}		O WATER FO	OR 80% REC	HARGE:	3.931	ft. below TOC
вотто	DM:	10.	0 -	<u> </u>	<u>.</u> _₩		SAMPLING:				15:10
TOTAL D	EPTH (TD _o): 10.0	00	==	SCREEN	DEPTH T	O WATER A	T TIME OF S	AMPLIN <u>G:</u>	2.25 1	ft. below TOC
	n (inches) : De			==	(7.0 ft.)	APPEARA	ANCE OF SAI	MPLE:			Clear
	NG VOLUME				:	LABORA	ΓORY:		_	Analy	tical Sciences
			1.17 gallor			SEE CHA	IN OF CUST	ODY FORM I	OR ANALY	TICAL INFOR	rmation.
	PURGIN	G DATA	T		JLATIVE REMOVED		WATER	CHARACTE	RISTICS	T	COMMENTS
DATE	BEGIN	FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
12/5/05	15:01	15:02	1	1	0.85	7.73	0.232	304	11.4	0.90	
12/5/05	15:02	15:04	2	3	2.55	7.67	0.250	123	11.7	1.41	
12/5/05	15:04	15:06	2	5	4.26	7.74	0.253	68	11.9	1.68	
					-						
					-	1					
					-						

	S E N	IGII	NEEF	R S		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW- 6
PROJECT	c	_ !	T l			JOB NUMBE		SITE	V-4C		RECORDED BY
		scnmadau	er Lumbe	r			316.00		Vaterfront		Bruce Taverner
HAND PUI SUBMERS BAILER OTHER	MP SIBLE PUMP	<i>MET</i>	GING CHOD	SAMPLIN METHOL) 	REMARKS	n. wells), unto or until dry. er interface				s (or 5 gallons m inimu cond.) have stabilized
CASING	DIAMETER	(D _c): 2.0)			DATE OF	SAMPLING:				2/5/2005
DEPTH 1		/		\rightarrow D _C		WEATHE	R:			(Clear/cold
WATE		2.4	2 🔻	<u></u>	SURFACE (E)		WATER LEV	/FLS FROM	TOC:		.42 / 2.42
NAPL:		n.a	* -0.49				WELL DEPT				8.88
NAPL TH	ICKNESS:	n.a								2	5 gallons
SCREEN	DEPTH:			h	H		OLUME (3 C				
TOP:		3.0)	1	TD_{c}		O WATER FO	OR 80% REC	HARGE:	3.841	ft. below TOC
ВОТТ	OM:	10.	0 -	<u>▼</u> ▼	<u> </u>	TIME OF	SAMPLING:		_		18:20
TOTAL D	EPTH (TD ₀	 :): 10.0	00	==	SCREEN	DEPTH T	O WATER A	T TIME OF S	AMPLING:	2.44	ft. below TOC
	n (inches) : De				(7.0 ft.)	APPEARA	ANCE OF SAI	MPLE:			Clear
	NG VOLUME				<u>.</u>	LABORA	TORY:			Analy	tical Sciences
	3.14 (D _C / 2) ²]		1.16 gallor			SEE CHA	IN OF CUST	ODY FORM I	OR ANALY	TICAL INFOR	RMATION.
	PURGIN	IG DATA	ı		JLATIVE REMOVED		WATER	CHARACTE	RISTICS		COMMENTS
DATE	BEGIN	FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
12/5/05	18:10	18:11	1	1	0.86	7.89	0.507	835	11.4	1.63	
12/5/05	18:11	18:13	2	3	2.59	7.55	0.440	154	11.9	1.49	
12/5/05	18:13	18:14	2	5	4.32	7.47	0.428	82	12.1	1.14	
										1	
						1					
						1					
					+	1				1	
L											1

	S E N	IGI1	NEEF	RS		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW- 7
PROJECT	c	_l	T h .	_		JOB NUMBER		SITE	V - 4 C		RECORDED BY
		Schmidbau	er Lumbe	r			316.00		Vaterfront		Bruce Taverner
HAND PUN	MP SIBLE PUMP	<i>MET</i>	GING HOD	SAMPLIN METHOL		for 2" dia (±10%), o	n. wells), unt or until dry.	til water pa	rameters (pH, temp.,	es (or 5 gallons minimum cond.) have stabilized
BAILER OTHER				X	<u> </u>	Exceeded	er interface .	probe used	to check i	or NAPLs.	MLE = Meter Limit
CASING	DIAMETER	(D _c):2.0)	~ D	_	DATE OF	SAMPLING:		_	1	12/5/2005
DEPTH T	Ō:		1	\rightarrow D _C	GROUND (E)	WEATHE	R:			(Clear/cold
WATE	R (h):	2.5	2 🕌	★ 🏭	SON ACL	TAGGED	WATER LEV	ELS FROM	TOC:	2	2.52 / 2.52
NAPL:		n.a	-0.54	h		TAGGED	WELL DEPT	H FROM TO	C:		9.51
NAPL TH	ICKNESS:	n.a	<u>*</u>	 h	H	PURGE V	OLUME (3 C	ASING VOLU	JMES):	3.	.4 gallons
SCREEN	DEPTH:					DEPTH T	O WATER F	OR 80% REC	CHARGE:	3.91	ft. below TOC
TOP:		3.0		<u> </u>	TD _c	TIME OF	SAMPLING:				16:50
ВОТТО		10.			. —	DEPTH T	O WATER A	T TIME OF S	AMPLING:	2.55	ft. below TOC
TOTAL D	EPTH (TD _c	:):10.0	00	<u> </u>	SCREEN INTERVAL (7.0 ft.)	APPEARA	ANCE OF SAI	MPLE:			Clear
Diameters in	n (inches) : De	epths in (feet)			(7.010.)	LABORAT	TORY:			Analy	tical Sciences
	NG VOLUME 3.14 (D _c / 2) ²]		1.13 gallor	ns	·-	SEE CHA	IN OF CUST	ODY FORM I	FOR ANALY	TICAL INFO	RMATION.
	PURGIN	G DATA			JLATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
12/5/05	16:34	16:35	1	1	0.88	7.82	0.415	*MLE	11.9	1.35	
12/5/05	16:35	16:36	2	3	2.65	8.00	0.388	257	12.1	1.61	
12/5/05	16:36	16:37	2	5	4.41	8.03	0.389	191	12,2	1.36	
											<u> </u>
											

•	S E N	IGIN	NEEF	RS		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW- 8D
PROJECT	S	Schmidhau	er Lumbe	r		JOB NUMBE 01203	R 3 316.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner
			GING	SAMPLIN							
HAND PUI	MP		THOD	METHOL		for 2" dia (±10%), o	a. wells), unt or until dry.	til water pa	rameters (pH, temp.,	s (or 5 gallons minimur cond.) have stabilized
SUBMERS BAILER OTHER	SIBLE PUMP		<u>x</u>	X			er interface	probe used	l to check	for NAPLs.	
CASING	DIAMETER	(D _c):2.0)	→ D _c		DATE OF	SAMPLING:		_	1	2/5/2005
DEPTH 1	TO:		1	$D_{\rm c}$	GROUND SURFACE (E)	WEATHE	R:			C	Clear/cold
WATE	R (h):	7.3	0 +	不 関		TAGGED	WATER LEV	/ELS FROM	TOC:	7	.30 / 7.30
NAPL:		n.a.	·* -0.55			TAGGED	WELL DEPT	H FROM TO	C:		19.55
NAPL TH	ICKNESS:	n.a.		h h	H	PURGE V	OLUME (3 C	ASING VOLU	JMES):	5.	9 gallons
SCREEN	DEPTH:					DEPTH T	O WATER FO	OR 80% REC	CHARGE:	9.73 1	ft. below TOC
TOP:		15.	0	↓ ↓	TD_{c}	TIME OF	SAMPLING:				08:50
BOTTO		20.	0	<u> </u>	: -▼	DEPTH T	O WATER A	T TIME OF S	AMPLING:	7.35 1	ft. below TOC
TOTAL D	EPTH (TD _c	:): 20.0	00		SCREEN INTERVAL		ANCE OF SAI				Cloudy
Diameters in	n (inches) : De	epths in (feet)		==	(5.0 ft.)	LABORA				Δnalv	tical Sciences
	NG VOLUME 3.14 (D _C / 2) ²]		1.98 gallor	ns_			IN OF CUST	ODY FORM F	OR ANALY		
	PURGIN	G DATA			JLATIVE REMOVED		WATER	CHARACTE	RISTICS		COMMENTS
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
12/5/05	08:40	08:41	1	1	0.50	7.74	1.670	833	13.1	1.55	
12/5/05	08:41	08:43	2	3	1.51	7.38	2.230	256	14.3	1.30	
12/5/05	08:43	08:44	2	5	2.52	7.41	2.250	119	14.6	2.12	
12/5/05	08:44	08:45	1	6	3.03	7.45	2.300	83	15.1	1.41	
					+	1					
					-						

	S EN	G 1	NEEF	RS		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW- 9D
PROJECT		Sahmidhau	er Lumbe			JOB NUMBE	R 3 316.00	SITE 1000 V	Vaterfront		RECORDED BY Bruce Taverner
											es (or 5 gallons m inimun
HAND PUN	ИР		GING THOD	SAMPLIN METHOL		for 2" dia	n. wells), unt or until dry.	til water pa	rameters (pH, temp.,	cond.) have stabilized
SUBMERS	IBLE PUMP		X .				or intorfood	nroho usod	l to abook f	For NADI s	MLE = Meter Limit
BAILER OTHER				X		Exceeded		probe usec	i to check i	or NALLS.	WILE - Weter Limit
CASING	DIAMETER	(D _C):2.0)	→ D _C	-	DATE OF	SAMPLING:		_	1	12/5/2005
DEPTH T			. •		GROUND (E)	WEATHE	:R:			(Clear/cold
WATE	≺ (n):	7.0		▼ 🖟		TAGGED	WATER LEV	ELS FROM	TOC:	7	7.01 / 7.01
NAPL:		n.a.	-0.49	h	3	TAGGED	WELL DEPT	H FROM TO	C:		19.85
	ICKNESS:	n.a.	<u>*</u>	h }	H	PURGE V	OLUME (3 C	ASING VOLU	JMES):	6	4 gallons
SCREEN	DEPTH:	45	_			DEPTH T	O WATER FO	OR 80% REC	CHARGE:	9.61	ft. below TOC
TOP:		15.		<u> </u>	TD_{c}	TIME OF	SAMPLING:				08:20
BOTTO		20.	5	<u> </u>	:	DEPTH T	O WATER A	T TIME OF S	AMPLING:	7.11	ft. below TOC
TOTAL D	EPTH (TD _c	;):20.5	50		SCREEN INTERVAL	APPEARA	ANCE OF SAI	MPLE:			Cloudy
Diameters in	n (inches) : De	epths in (feet)		<u> </u>	(5.0 ft.)	LABORA ⁻	TORY.		-	Analy	tical Sciences
	NG VOLUME 5.14 (D _C / 2) ²]		2.12 gallor	ns			IN OF CUST	ODY FORM I	OR ANALY	•	
	PURGIN	IG DATA			JLATIVE REMOVED		WATER	CHARACTE	RISTICS		COMMENTS
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
							,				
12/5/05	08:06	08:07	1	1	0.47	7.06	2.540	*MLE	13.5	0.82	
12/5/05	08:07	08:08	2	3	1.41	7.10	2.290	353	14.7	1.02	
12/5/05	08:08	08:09	2	5	2.36	7.23	2.250	144	14.8	1.11	
12/5/05	08:09	08:10	2	7	3.30	7.28	2.230	97	15.1	0.91	
											
											<u> </u>
			1		1	l .	1	I	l		

		S E N	I G I I	NEEF	R S		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW-10
PROJ	ECT	S	Schmidbau	ıer Lumbe	r		JOB NUMBE. 01203	R 3 16.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner
SUE BAI	ND PUN BMERS ILER HER	MP IBLE PUMP		GING HOD	SAMPLIN METHOL		(±10%), (n. wells), unt or until dry. er interface	til water pa	rameters (_]	pH, temp., o	s (or 5 gallons m inimum cond.) have stabilized MLE = Meter Limit
CA DE V NA SC TO Diar	SING I	O: R (h): CKNESS: DEPTH: M: EPTH (TD _c (inches): De	epths in (feet)	5 * -0.35	h V	GROUND (S) SURFACE (S) H TD _C SCREEN INTERVAL (10.0 ft.)	WEATHE TAGGED TAGGED PURGE V DEPTH T TIME OF DEPTH T APPEARA LABORA	WATER LEV WELL DEPT OLUME (3 C. O WATER FO SAMPLING: O WATER A'	TH FROM TO ASING VOLU OR 80% REC T TIME OF S MPLE:	C:	5. 6.05 f 3.82 f	2/5/2005 Clear/cold .85 / 3.85 15.05 4 gallons ft. below TOC 19:40 ft. below TOC Clear tical Sciences RMATION.
DA	ATE -	PURGIN TII	ME FINISH	WATER REMOVED (GAL)		CASING VOLUMES	pH	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
12/:	5/05	19:21	19:22	1	1	0.56	7.40	1.030	*MLE	12.3	1.15	
12/:	5/05	19:22	19:23	2	3	1.67	7.33	0.669	*MLE	12.5	1.17	
Report Form: WELL PURGE RECORD 2 Project ID: 01203316.00.GPJ Date: 12/13/2005	5/05	19:23	19:25	2.5	5.5	3.06	7.38	0.655	*MLE	13.0	1.10	
ort Form:												
Repc												

	S E N	I G I 1	NEEF	RS		20	PURGE 005 - 4th Qu	ıarter	RD		WELL NUMBER MW-11
PROJECT	c	ah midh an	T	_		JOB NUMBER		SITE 1000 X	Vataufua w		RECORDED BY
		scnmadau	er Lumbe	r			316.00		Vaterfront		Bruce Taverner
HAND PUI	MP		GING THOD	SAMPLIN METHOL		for 2" dia	n. wells), unto or until dry.	til water pa	rameters (pH, temp.,	es (or 5 gallons minimum cond.) have stabilized
BAILER	SIBLE PUMP		X	X			er interface l.	probe used	l to check f	for NAPLs.	MLE = Meter Limit
CASING	DIAMETER	(D-): 2 (DATE OF	SAMPLING:				12/5/2005
DEPTH 1		(D _C)		\rightarrow D _C		WEATHE					Clear/cold
WATE		4.0	3 <u>*</u>	<u> </u>	SURFACE (S)		WATER LEV	/ELC EDOM			03 / 4.03
NAPL:		n.a	* -0.57	h						4	
NAPL TH	ICKNESS:	n.a	-0.57		3		WELL DEPT				15.11
SCREEN			<u> </u>	h	Н		OLUME (3 C				.2 gallons
TOP:	DEI III.	5.0)	1	$TD_{\rm C}$	DEPTH T	O WATER FO	OR 80% RE0	CHARGE:	6.15	ft. below TOC
вотто	OM:	15.	 0 -	¥∭¥∣	<u> </u>	TIME OF	SAMPLING:				19:00
	EPTH (TD _o	-			SCREEN	DEPTH T	O WATER A	T TIME OF S	AMPLING:	4.23	ft. below TOC
	n (inches) : De			[- -	INTERVAL (10.0 ft.)	APPEARA	ANCE OF SAI	MPLE:			Clear
						LABORAT	TORY:			Analy	tical Sciences
	NG VOLUME 3.14 (D _c / 2) ²]		1.73 gallor	ns		SEE CHA	IN OF CUST	ODY FORM I	FOR ANALY	TICAL INFO	RMATION.
	PURGIN	IG DATA			JLATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS
DATE	TII BEGIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
12/5/05	18:49	18:50	1	1	0.58	7.31	1.160	*MLE	12,4	1.30	
12/5/05	18:50	18:52	2	3	1.73	7.24	1.210	*MLE	12.8	1.75	
			2	5	-						
12/5/05	18:52	18:53	2	3	2.89	7.33	1.220	630	13.2	4.73	
					1						
						-					-
					-						-
											_
			<u> </u>			I	1		l		

_	S E N	IGIN	NEEF	RS		20	PURGE 005 - 4th Qu	arter	RD		WELL NUMBER MW-12
PROJECT	S	Schmidbau	er Lumbe	r		JOB NUMBE. 01203	R 3 16.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner
HAND PUI SUBMERS BAILER OTHER	MP SIBLE PUMP		GING 'HOD	SAMPLIN METHOL		(±10%), (RITERIA Min. wells), und or until dry. er interface	il water pa	rameters ()	pH, temp., o	s (or 5 gallons m inimu cond.) have stabilized
CASING DEPTH 1 WATE NAPL: NAPL TH SCREEN TOP: BOTTO TOTAL D Diameters i	R (h): HICKNESS: I DEPTH:	3.6 n.a n.a 5.0 15. 15.2 epths in (feet)	2 * -0.26 * -0.26		GROUND (S) SURFACE (S) H TD _C SCREEN INTERVAL (10.0 ft.)	WEATHE TAGGED TAGGED PURGE V DEPTH T TIME OF DEPTH T APPEARA LABORA	WATER LEV WELL DEPT OLUME (3 C O WATER FO SAMPLING: O WATER A	TH FROM TO ASING VOLU OR 80% REC T TIME OF S MPLE:	JMES):CHARGE:	5.881 3.671 Sliq	2/5/2005 Clear/cold .62 / 3.62 14.98 5 gallons ft. below TOC 15:40 ft. below TOC ghtly cloudy tical Sciences RMATION.
DATE	PURGIN TII	G DATA ME FINISH	WATER REMOVED (GAL)		CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
12/5/05 12/5/05 12/5/05 12/5/05	15:24 15:25 15:27 15:28	15:25 15:27 15:28 15:29	1 2 2 1	1 3 5 6	0.54 1.62 2.71 3.25	8.09 8.00 7.97 8.01	0.542 0.544 0.569 0.564	104 274 753 228	12.5 13.0 13.4 13.4	1.01 1.25 1.30 1.32	

	S C	SEN	IGIN	NEEF	RS			PURGE		RD		WELL NUMBER MW-13
	PROJECT						JOB NUMBER	<mark>05 - 4th Qւ</mark> ռ	siter SITE			RECORDED BY
		S	Schmidbau	er Lumbe	r		01203	316.00	1099 V	Vaterfront	Drive	Bruce Taverner
			PUR	GING	SAMPLIN	G	PURGING CR	RITERIA Mi	inimum of 3	wetted cas	ing volume	s (or 5 gallons m inimun
				HOD	METHOL		for 2" dia	. wells), unt or until dry.	til water pa	rameters (p	oH, temp., o	cond.) have stabilized
	HAND PUN						REMARKS	n until ul y.				
		IBLE PUMP		<u> </u>			* Oil/wate	er interface	probe used	l to check f	or NAPLs.	
	BAILER OTHER		-		X							
	CASING I	DIAMETER	(D _C):2.0)	→ D _C	←	DATE OF	SAMPLING:			1	2/5/2005
	DEPTH T			_ \		GROUND (S)	WEATHE	R:			С	Clear/cold
	WATER	≺ (n):	4.4		T		TAGGED	WATER LEV	/ELS FROM	TOC:	4	.45 / 4.45
	NAPL:		n.a.	-0.20			TAGGED	WELL DEPT	H FROM TO	C:		14.95
		ICKNESS:	n.a.		h h	H	PURGE V	OLUME (3 C	ASING VOLU	JMES):	5.	2 gallons
	SCREEN TOP:	DEPTH:	5.0	`		TD_{c}	DEPTH T	O WATER F	OR 80% REC	CHARGE:	6.56 f	t. below TOC
		NA.			<u> </u>		TIME OF	SAMPLING:				16:00
	BOTTO		15.				DEPTH T	O WATER A	T TIME OF S	AMPLING:	5.40 f	t. below TOC
		EPTH (TD _c	<i></i>	20	1==	SCREEN INTERVAL (10.0 ft.)	APPEARA	ANCE OF SAI	MPLE:		Slig	ghtly cloudy
		n (inches) : De				(, <u> </u>	LABORAT	TORY:			Analy	tical Sciences
		NG VOLUME 5.14 (D _C / 2) ²]		1.72 gallor	ns (i.i.)	•	SEE CHA	IN OF CUST	ODY FORM F	OR ANALY	TICAL INFOR	RMATION.
		PURGIN	IG DATA			ILATIVE REMOVED		WATER	CHARACTE	RISTICS		COMMENTS
		TI	ME	WATER		CASING		CONDUC-	TURBIDITY	TEMPER-	DISSOLVED	
	DATE -	BEGIN	FINISH	REMOVED (GAL)	GAL	VOLUMES	pН	TIVITY (mmhos/cm)	(NTU)	ATURE (°C)	OXYGEN (ppm)	
	12/5/05	15:46	15:47	1	1	0.58	8.35	1.000	221	11.8	1.20	
	12/5/05	15:47	15:48	2	3	1.74	8.17	0.950	85	12.4	1.25	
	12/5/05	15:48	15:50	2.25	5.25	3.05	8.10	0.960	38	12.6	1.23	
90												
/13/20												
te: 12												
y Da												
00.GI												
3316												
Project ID: 01203316.00.GPJ Date: 12/13/2005												
ect ID												
Proje												
Report Form: WELL PURGE RECORD 2												
3 REC												
URGE												
TL P												
n: WE												
t Forr												
Repor												

Appendix B

Laboratory Analytical Reports
Analytical Science Report #5120801, dated 19 December 2005
Frontier Analytical Laboratory Report #3646, dated 28 December 2005
Analytical Science Report #5121202, dated 12 January 2006

December 19, 2005

Karin Fresnel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Dear Karin,

Enclosed you will find Analytical Sciences' final report 5120801 for your Schmidbauer project. An invoice for this work is enclosed.

Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future.

Sincerely,

Analytical Sciences

Mark A. Valentini, Ph.D.

Laboratory Director

Report Date: December 19, 2005

Laboratory Report

Karin Fresnel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Project Name: Schmidbauer 01203316.00

Lab Project: **5120801**

This 10 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Manh A. Valentini

Laboratory Director

Chlorinated Phenols by Canadian Pulp Method in Water

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
5120801-01	MW-1	2,4,6-Ti	richlorophenol		ND	1.0
		2,4,5-Ti	richlorophenol		ND	1.0
		2,3,4-Ti	richlorophenol		ND	1.0
		2,3,5,6-	Tetrachlorophenol		ND	1.0
		2,3,4,6-	Tetrachlorophenol		ND	1.0
		2,3,4,5-	Tetrachlorophenol		ND	1.0
		Pentach	lorophenol		ND	1.0
Su	irrogates	Result (ug/L)	% Recove	ery	Acceptance Range ((%)
2,4,6-Tribromop	henol	24.8	93		30-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05		Batch: B000392
Date Received:	12/07/05		Method:	Canadian Pulp I	Method	

Lab#	Sample ID	Compou	and Name	Resu	ılt (ug/L)	RDL (ug/L)
5120801-02	MW-2	2,4,6-Tri	ichlorophenol	ND		1.0
		2,4,5-Tri	ichlorophenol	ND		1.0
		2,3,4-Tri	ichlorophenol	ND		1.0
		2,3,5,6-7	Tetrachlorophenol	l ND		1.0
		2,3,4,6-7	Tetrachlorophenol	l ND		1.0
		2,3,4,5-7	Tetrachlorophenol	l ND		1.0
		Pentachl	orophenol	ND		1.0
Sı	ırrogates	Result (ug/L)	% Recove	ery Acc	eptance Range (%)	
2,4,6-Tribromop	phenol	27.3	102		30-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05	QC Batch	a: B000392
Date Received:	12/07/05		Method:	Canadian Pulp Method		

Chlorinated Phenols by Canadian Pulp Method in Water

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
5120801-03	MW-3R	2,4,6-Ti	richlorophenol		ND	1.0
		2,4,5-Ti	richlorophenol		ND	1.0
		2,3,4-Ti	richlorophenol		ND	1.0
		2,3,5,6-	Tetrachlorophenol		ND	1.0
		2,3,4,6-	Tetrachlorophenol		ND	1.0
		2,3,4,5-	Tetrachlorophenol		ND	1.0
		Pentach	lorophenol		ND	1.0
Sı	ırrogates	Result (ug/L)	% Recove	ry _	Acceptance Range	(%)
2,4,6-Tribromop	phenol	24.0	90		30-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05		Batch: B000392
Date Received:	12/07/05		Method:	Canadian Pulp	Method	

Lab#	Sample ID	Compo	und Name	Resi	ult (ug/L)	RDL (ug/L)
5120801-04	MW-4	2,4,6-Tı	richlorophenol	ND		1.0
		2,4,5-Tı	richlorophenol	ND		1.0
		2,3,4-Tı	richlorophenol	ND		1.0
		2,3,5,6-	Tetrachlorophenol	l ND		1.0
		2,3,4,6-	Tetrachloropheno	l ND		1.0
		2,3,4,5-	Tetrachloropheno	l ND		1.0
		Pentach	lorophenol	ND		1.0
Sı	urrogates	Result (ug/L)	% Recove	ery Acc	ceptance Range (%)	
2,4,6-Tribromo	phenol	24.9	93		30-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05	QC Batc	h: B000392
Date Received:	12/07/05		Method:	Canadian Pulp Method		

Chlorinated Phenols by Canadian Pulp Method in Water

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
5120801-05	MW-5	2,4,6-T	richlorophenol		ND	1.0
		2,4,5-T	richlorophenol		ND	1.0
		2,3,4-T	richlorophenol		ND	1.0
		2,3,5,6-	Tetrachlorophenol		ND	1.0
		2,3,4,6-	Tetrachlorophenol		ND	1.0
		2,3,4,5-	Tetrachlorophenol		ND	1.0
		Pentach	lorophenol		ND	1.0
Sı	ırrogates	Result (ug/L)	% Recove	ery	Acceptance Range ((%)
2,4,6-Tribromop	phenol	23.0	86		30-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05	QC E	Batch: B000392
Date Received:	12/07/05		Method:	Canadian Pulp	Method	

Lab#	Sample ID	Compou	and Name	Resi	ult (ug/L)	RDL (ug/L)
5120801-06	MW-6	2,4,6-Tr	richlorophenol	ND		1.0
		2,4,5-Tr	richlorophenol	ND		1.0
		2,3,4-Tr	richlorophenol	ND		1.0
		2,3,5,6-7	Tetrachlorophenol	l ND		1.0
		2,3,4,6-7	Tetrachlorophenol	l ND		1.0
		2,3,4,5-7	Tetrachlorophenol	l ND		1.0
		Pentachl	lorophenol	ND		1.0
Sı	ırrogates	Result (ug/L)	% Recove	ery Acc	eptance Range (%)	
2,4,6-Tribromop	ohenol	25.1	94		30-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05	QC Batcl	n: B000392
Date Received:	12/07/05		Method:	Canadian Pulp Method		

Chlorinated Phenols by Canadian Pulp Method in Water

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
5120801-07	MW-7	2,4,6-Ti	richlorophenol		ND	1.0
		2,4,5-Ti	richlorophenol		ND	1.0
		2,3,4-Ti	richlorophenol		ND	1.0
		2,3,5,6-	Tetrachlorophenol		ND	1.0
		2,3,4,6-	Tetrachlorophenol		ND	1.0
		2,3,4,5-	Tetrachlorophenol		ND	1.0
		Pentach	lorophenol		ND	1.0
Su	ırrogates	Result (ug/L)	% Recove	ry _	Acceptance Range	2 (%)
2,4,6-Tribromop	ohenol	23.5	88		30-150	
Date Sampled: Date Received:	12/05/05 12/07/05		Date Analyzed: Method:	12/20/05 Canadian Pulp		Batch: B000392

Lab#	Sample ID	Compou	and Name	Res	sult (ug/L)	RDL (ug/L)
5120801-08	MW-8D	2,4,6-Tr	richlorophenol	ND		1.0
		2,4,5-Tr	richlorophenol	1.	0	1.0
		2,3,4-Tr	richlorophenol	ND		1.0
		2,3,5,6-	Tetrachlorophenol	l ND		1.0
		2,3,4,6-	Tetrachloropheno	l ND		1.0
		2,3,4,5-	Tetrachlorophenol	l ND		1.0
		Pentach	lorophenol	4.	6	1.0
S	urrogates	Result (ug/L)	% Recove	ery Ac	ceptance Range (%))
2,4,6-Tribromo	phenol	22.0	82		30-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05	QC Bato	eh: B000392
Date Received:	12/07/05		Method:	Canadian Pulp Method		

Chlorinated Phenols by Canadian Pulp Method in Water

Lab#	Sample ID	Compo	und Name		Result (ug	/L)	RDL (ug/L)
5120801-09	MW-9D	2,4,6-Tı	richlorophenol		ND		1.0
		2,4,5-Ti	richlorophenol		1.5		1.0
		2,3,4-Tı	richlorophenol		ND		1.0
		2,3,5,6-	Tetrachlorophenol		ND		1.0
		2,3,4,6-	Tetrachlorophenol		1.8		1.0
		2,3,4,5-	Tetrachlorophenol		ND		1.0
		Pentach	lorophenol		10		1.0
Su	ırrogates	Result (ug/L)	% Recove	ry _	Acceptanc	ce Range (%)	
2,4,6-Tribromop	henol	28.7	107		30)-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05		QC Batch	: B000392
Date Received:	12/07/05		Method:	Canadian Pulp	Method		

Lab#	Sample ID	Compou	and Name	Resi	ult (ug/L)	RDL (ug/L)
5120801-11	MW-11	2,4,6-Tr	richlorophenol	ND		1.0
		2,4,5-Tr	richlorophenol	ND		1.0
		2,3,4-Tr	richlorophenol	ND		1.0
		2,3,5,6-	Tetrachlorophenol	l ND		1.0
		2,3,4,6-	Tetrachlorophenol	l ND		1.0
		2,3,4,5-	Tetrachlorophenol	l ND		1.0
		Pentach	lorophenol	2.7	7	1.0
Sı	urrogates	Result (ug/L)	% Recove	ery Acc	ceptance Range (%)	
2,4,6-Tribromo	phenol	24.1	90		30-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05	QC Batc	h: B000392
Date Received:	12/07/05		Method:	Canadian Pulp Method		

Chlorinated Phenols by Canadian Pulp Method in Water

Lab#	Sample ID	Compo	und Name	F	Result (ug/L)	RDL (ug/L)
5120801-12	MW-12	2,4,6-Ti	richlorophenol	N	ID	1.0
		2,4,5-Ti	richlorophenol	N	ID	1.0
		2,3,4-Ti	richlorophenol	N	ID	1.0
		2,3,5,6-	Tetrachlorophenol	N	ID	1.0
		2,3,4,6-	Tetrachlorophenol	N	ID	1.0
		2,3,4,5-	Tetrachlorophenol	N	ID	1.0
		Pentach	lorophenol	N	ID	1.0
Sı	ırrogates	Result (ug/L)	% Recove	ry	Acceptance Range (%)
2,4,6-Tribromop	phenol	24.5	92		30-150	
Date Sampled: Date Received:	12/05/05 12/07/05		Date Analyzed: Method:	12/10/05 Canadian Pulp Meth		atch: B000392
Date Received.	12/07/03		Memou.	Canadian Pulp Meur	lou .	

Lab#	Sample ID	Compou	ınd Name	Res	ult (ug/L)	RDL (ug/L)
5120801-13	MW-13	2,4,6-Tr	ichlorophenol	ND		1.0
		2,4,5-Tr	ichlorophenol	ND		1.0
		2,3,4-Tr	ichlorophenol	ND		1.0
		2,3,5,6-7	Tetrachloropheno	l ND		1.0
		2,3,4,6-7	Tetrachlorophenol	l ND		1.0
		2,3,4,5-7	Tetrachloropheno!	l ND		1.0
		Pentachl	lorophenol	ND		1.0
Si	urrogates	Result (ug/L)	% Recove	ery Acc	ceptance Range (%))
2,4,6-Tribromo	phenol	23.1	87		30-150	
Date Sampled:	12/05/05		Date Analyzed:	12/10/05	QC Bato	eh: B000392
Date Received:	12/07/05		Method:	Canadian Pulp Method		

Quality Assurance Report

Chlorinated Phenols by Canadian Pulp Method in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000392 - EPA 3510C_MS										
Blank (B000392-BLK1)				Prepared	& Analyz	zed: 12/09	0/05			
2,4,6-Trichlorophenol	ND	1.0	ug/L							
2,4,5-Trichlorophenol	ND	1.0	ug/L							
2,3,4-Trichlorophenol	ND	1.0	ug/L							
2,3,5,6-Tetrachlorophenol	ND	1.0	ug/L							
2,3,4,6-Tetrachlorophenol	ND	1.0	ug/L							
2,3,4,5-Tetrachlorophenol	ND	1.0	ug/L							
Pentachlorophenol	ND	1.0	ug/L							
Surrogate: 2,4,6-Tribromophenol	29.0		ug/L	26.7		109	30-150			
Blank (B000392-BLK2)				Prepared	& Analyz	ed: 12/12	2/05			
2,4,6-Trichlorophenol	ND	1.0	ug/L							
2,4,5-Trichlorophenol	ND	1.0	ug/L							
2,3,4-Trichlorophenol	ND	1.0	ug/L							
2,3,5,6-Tetrachlorophenol	ND	1.0	ug/L							
2,3,4,6-Tetrachlorophenol	ND	1.0	ug/L							
2,3,4,5-Tetrachlorophenol	ND	1.0	ug/L							
Pentachlorophenol	ND	1.0	ug/L							
Surrogate: 2,4,6-Tribromophenol	14.8		ug/L	26.7		55	30-150			
LCS (B000392-BS1)				Prepared	& Analyz	zed: 12/09	0/05			
2,3,5,6-Tetrachlorophenol	5.20	1.0	ug/L	5.00		104	30-130			
2,3,4,6-Tetrachlorophenol	5.40	1.0	ug/L	5.00		108	30-130			
2,3,4,5-Tetrachlorophenol	5.33	1.0	ug/L	5.00		107	30-130			
Pentachlorophenol	5.33	1.0	ug/L	5.00		107	30-130			
Surrogate: 2,4,6-Tribromophenol	23.6		ug/L	26.7		88	30-130			
LCS Dup (B000392-BSD1)				Prepared	& Analyz	zed: 12/09	0/05			
2,3,5,6-Tetrachlorophenol	5.13	1.0	ug/L	5.00		103	30-130	1	20	
2,3,4,6-Tetrachlorophenol	5.27	1.0	ug/L	5.00		105	30-130	3	20	
2,3,4,5-Tetrachlorophenol	5.20	1.0	ug/L	5.00		104	30-130	3	20	
Pentachlorophenol	5.20	1.0	ug/L	5.00		104	30-130	3	20	
Surrogate: 2,4,6-Tribromophenol	28.3		ug/L	26.7		106	30-130			

Lab Project#: 5120801 CA Lab Accreditation #: 2303

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000392 - EPA 3510C_MS										
Matrix Spike (B000392-MS1)	So	urce: 5120801	-01	Prepared	& Analyz	zed: 12/09	0/05			
2,3,5,6-Tetrachlorophenol	5.20	1.0	ug/L	5.00	ND	104	0-200			
2,3,4,6-Tetrachlorophenol	5.47	1.0	ug/L	5.00	ND	109	0-200			
2,3,4,5-Tetrachlorophenol	5.33	1.0	ug/L	5.00	ND	107	0-200			
Pentachlorophenol	5.67	1.0	ug/L	5.00	ND	113	0-200			
Surrogate: 2,4,6-Tribromophenol	29.7		ug/L	26.7		111	30-150			
Matrix Spike Dup (B000392-MSD1)	So	urce: 5120801	-01	Prepared	& Analyz	zed: 12/09	0/05			
2,3,5,6-Tetrachlorophenol	5.27	1.0	ug/L	5.00	ND	105	0-200	1	200	
2,3,4,6-Tetrachlorophenol	5.60	1.0	ug/L	5.00	ND	112	0-200	3	200	
2,3,4,5-Tetrachlorophenol	5.47	1.0	ug/L	5.00	ND	109	0-200	2	200	
Pentachlorophenol	5.80	1.0	ug/L	5.00	ND	116	0-200	3	200	
Surrogate: 2,4,6-Tribromophenol	26.0		ug/L	26.7		97	30-150			

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

Page 10 of 10

Lab Project#: 5120801

CA Lab Accreditation #: 2303

Analytical Sciences

P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093

CHAIN OF CUSTODY

LAB PROJECT NUMBER:

LAB SAMPLE # 5120 86,-1 COOLER TEMPERATURE 4 GEOTRACKER EDF: CLIENT'S PROJECT NAME: Schmidbauer Lumber Co. Analiz for A NAIXON PAGE __1_ COMMENTS Fullows GLOBAL ID: deleated ၁၀၁ CLIENT'S PROJECT NUMBER: 01203316.00 TURNAROUND TIME (check one) NORMAL X 24 Hours MOBILE LAB SAME DAY 48 Hours 5 DAYS ANALYSIS COMPANY NAME: SCHMIDBAUER LUMBER CO. ADDRESS: 1099 WATERFRONT DR. BILLING INFORMATION CONTACT: RICH GRAHAM EUREKA, CA PCP/TCP BY PHONE#: FAX #: PRESV. TIME MATRIX CONT. この ADDRESS: 3645 WESTWIND BOULEVARD 9:15 SANTA ROSA, CA 95403 19:45 0:30 8:50 3:20 6:20 4:50 **CLIENT INFORMATION** 12/5/05 DATE SAMPLED COMPANY NAME: SCS ENGINEERS FAX#: (707) 544-5769 CONTACT: KARIN FRESNEL PHONE#: (707) 546-9461 CLIENT SAMPLE 1..D. P. 34 i 3 HEM S

. 1 00:1				=
	SIGNATURES			
SAMPLED BY:	Shure Town	7 - C		
X	3.0705 15:55	RECEIVED A BORATORY:	MANS	T 155
DATE	E TME	SIGNATURE	DÁTE	TIME

and of

0

0h1/

9

Analytical Sciences

P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093

CHAIN OF CUSTODY LAB PROJECT NUMBER: 5126%

idbauer Lumber Co.	3316.00	GEOTRACKER EDF: Y N	GLOBAL ID:	COOLER TEMPERATURE	ပ္စ	900	,
CLIENT'S PROJECT NAME: Schmidbauer Lumber Co.	CLIENT'S PROJECT NUMBER: 01203316.00	TURNAROUND TIME (check one)			24 Hours	NORMAL X	
Ö	CLIE	TURNARO	MOBILE LAB	SAME DAY	48 Hours	5 DAYS	
ING INFORMATION	CONTACT: RICH GRAHAM	COMPANY NAME: SCHMIDBAUER LUMBER CO.	ADDRESS: 1099 WATERFRONT DR.	EUREKA, CA			
BILLIN	CONTACT	COMPANY NAME:	ADDRESS:		PHONE#:	FAX #:	
CLIENT INFORMATION	COMPANY NAME: SCS ENGINEERS	ADDRESS: 3645 WESTWIND BOULEVARD	SANTA ROSA, CA 95403	CONTACT: KARIN FRESNEL	PHONE#: (707) 546-9461	Fax #: (707) 544-5769	
CLIEN	COMPANY NAME:	ADDRESS:	•	CONTACT:	PHONE#:	FAX#:	

LAB COMMENTS SAMPLE FOR DISSIDED IN STREET IN THE AMPLE FOR DISSIDED IN THE AMPLE POR DISSIDED IN THE AMPLE
--

RECEIVED BY LABORATORY:

SIGNATURE

12.17.05 15:55

RELINQUISHED BY

SIGNATURE

January 12, 2006

Karin Fresnel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Dear Karin,

Enclosed you will find Analytical Sciences' final report 5121202 for your Schmidbauer project. An invoice for this work is enclosed.

Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future.

Sincerely,

Analytical Sciences

Mark A. Valentini, Ph.D.

Laboratory Director

Report Date: January 12, 2006

Laboratory Report

Karin Fresnel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Project Name:

Schmidbauer

01203316.00

Lab Project:

5121202

This 5 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

Lab#	Sample ID	Compound Name		Resul	t (ug/L) RDL (ug/L	RDL (ug/L)	
5121202-01 MW-10		2,4,6-Trichlorophenol		6.0	1.0		
		2,4,5-T	richlorophenol	130	1.0		
		2,3,4-Trichlorophenol 2,3,5,6-Tetrachlorophenol		ND	1.0		
				l ND	1.0		
		2,3,4,6	-Tetrachloropheno	1 290	1.0		
		2,3,4,5-Tetrachlorophenol			1.0		
		Pentach	ılorophenol	1600	10		
Surrogates		Result (ug/L)	% Recove	ery Acce	Acceptance Range (%)		
2,4,6-Tribromophenol		682	85		30-150		
Date Sampled:	12/09/05	Date Analyzed: Method:		12/13/05	QC Batch: B000392	 -	
Date Received:	12/12/05			Canadian Pulp Method			

Quality Assurance Report

Chlorinated Phenols by Canadian Pulp Method in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000392 - EPA 3510C MS										
Blank (B000392-BLK1)				Prepared	& Analyz	ed: 12/09	9/05			
2,4,6-Trichlorophenol	ND	1.0	ug/L							
2,4,5-Trichlorophenol	ND	1.0	ug/L							
2,3,4-Trichlorophenol	ND	1.0	ug/L							
2,3,5,6-Tetrachlorophenol	ND	1.0	ug/L							
2,3,4,6-Tetrachlorophenol	ND	1.0	ug/L							
2,3,4,5-Tetrachlorophenol	ND	1.0	ug/L							
Pentachlorophenol	ND	1.0	ug/L							
Surrogate: 2,4,6-Tribromophenol	29.0		ug/L	26.7		109	30-150			
LCS (B000392-B\$1)				Prepared	& Analyz	ed: 12/09	/05			
2,3,5,6-Tetrachlorophenol	5.20	1.0	ug/L	5.00		104	30-130			
2,3,4,6-Tetrachlorophenol	5.40	1.0	ug/L	5.00		108	30-130			
2,3,4,5-Tetrachlorophenol	5.33	1.0	ug/L	5.00		107	30-130			
Pentachlorophenol	5.33	1.0	ug/L	5.00		107	30-130			
Surrogate: 2,4,6-Tribromophenol	23.6		ug/L	26.7		88	30-130			
LCS Dup (B000392-BSD1)				Prepared a	& Analyze	d: 12/09	/05			
2,3,5,6-Tetrachlorophenol	5.13	1.0	ug/L	5.00		103	30-130	1	20	
2,3,4,6-Tetrachlorophenol	5.27	1.0	ug/L	5.00		105	30-130	3	20	
2,3,4,5-Tetrachlorophenol	5.20	1.0	ug/L	5.00		104	30-130	3	20	
Pentachlorophenol	5.20	1.0	ug/L	5.00		104	30-130	3	20	
Surrogate: 2,4,6-Tribromophenol	28.3		ug/L	26.7		106	30-130			
Matrix Spike (B000392-MS1)	Son	ırce: 5120801-	01	Prepared &	& Analyze	d: 12/09/	/05			
,3,5,6-Tetrachlorophenol	5.20	1.0	ug/L	5.00	ND	104	30-150			
,3,4,6-Tetrachlorophenol	5.47	1.0	ug/L	5.00	ND	109	30-150			
,3,4,5-Tetrachlorophenol	5.33	1.0	ug/L	5.00	ND	107	30-150			
'entachlorophenol	5.67	1.0	ug/L	5.00	ND	113	30-150			
urrogate: 2,4,6-Tribromophenol	29.7		ug/L	26.7		111	30-150			

Chlorinated Phenols by Canadian Pulp Method in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000392 - EPA 3510C MS				_						
Matrix Spike Dup (B000392-MSD1)	So	urce: 5120801	-01	Prepared	& Analyz	ed: 12/09	 0/05			
2,3,5,6-Tetrachlorophenol	5.27	1.0	ug/L	5.00	ND	105	30-150	1	20	
2,3,4,6-Tetrachlorophenol	5.60	1.0	ug/L	5.00	ND	112	30-150	3	20	
2,3,4,5-Tetrachlorophenol	5.47	1.0	ug/L	5.00	ND	109	30-150	2	20	
Pentachlorophenol	5.80	1.0	ug/L	5.00	ND	116	30-150	3	20	
Surrogate: 2,4,6-Tribromophenol	26.0		ug/L	26.7		97	30-150			

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128
Fax (707) 769-8093

CHAIN OF CUSTODY

LAB PROJECT NUMBER:

1	1	Z,	1	7								-,-			-							_			
		 -		<u> </u>	!		_	J	LAB SAMPLE #		reted		Cons												112 C
idbauer Lumber Co.	316.00	GEOTRACKER EDF:	GLOBAL ID:	COOLER TEMPERATURE	0		PAGE 1 OF 1		COMMENTS	1000	IFICI IS DEPETED	AUALIZE TO	Clians + FAREN												1 2 /2/5 11
CLIENT'S PROJECT NAME: Schmidbauer Lumber Co.	CLIENT'S PROJECT NUMBER: 01203316.00	TURNAROUND TIME (check one)	MOBILE LAB	SAME DAY	48 Hours 24 Hours	5 DAYS NORMAL X	BAALVEIC	L 12/2																RECEIVED BY LABORATORY:	
4TION	· · · · · · · · · · · · · · · · · · ·	SCHMIDBAUER LUMBER CO.					980															SIGNATURES		RECEIVE	SIGNATURE
BILLINGINFORMATION	CONTACT: RICH GRAHAM		ADDRESS: 1099 WATERFRONT DR.	EUREKA, CA	PHONE#:	FAX #:			TESN SSN NO PCP/TCP BY CANDIAN PULP	×												200		0/1	
8	ŏ	COMPANY NAME:	¥		<u>a</u>				CONT.	2 3 K													4		DATE
ION		BOULEVARD	95403						TIME MATRIX	DM 5x:6			_	_	_							30	SAMPLED BY:	i	
FORMAT	SCS ENGINEERS	WESTWIND	SANTA ROSA, CA 95403	KARIN FRESNEL	(707) 546-9461	544-5769			DATE . SAMPLED	12/9	,										The state of the s	Ü	5		
CLIENTINFORMATION	COMPANY NAME: SCS	ADDRESS: 3645 WESTWIND BOULEVARD		CONTACT: KARIN	PHONE#: (707)	Fax #: (707) 544-5769			CLIENT SAMPLE ID.	MU)-10				;									120 California	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ITURE
	8								ITEM	•	7	3	4	2	9	7	8	9	10	Ξ			ב ס	<u>, – »</u>	SKGNATURE

December 28, 2005

FAL Project ID: 3646

Mr. Mark Valentini Analytical Sciences 110 Liberty Street Petaluma, CA 94952

Dear Mr. Valentini,

Enclosed are the results for Frontier Analytical Laboratory project **3646**. This corresponds to your AS project number **5121202**. The one aqueous sample received on 12/16/2005 was extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. Analytical Sciences requested a turnaround time of fifteen business days for project **3646**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our project-sample tracking log, a qualifier reference guide, a ML/MDL form and the analytical results. The Sample Receipt section contains your original chain of custody, our sample login form and a sample photo.

If you have any questions regarding project **3646**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Dan Vickers Vice President

Dan Vickers

www.frontieranalytical.com

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 3646

Received on: 12/16/2005

Project Due: 01/11/2006 Storage: R1

FAL Client Client Requested Sampling Sampling Hold Time Sample ID Dup Project ID Sample ID Matrix Method Date 3646-001- SA 0 5121202 MW-10 EPA 1613 D/F Aqueous 12/09/2005 09:25 am 12/09/2006

Qualifier Reference Guide

A	Isotopic Labeled	Standard	outside	QC	range l	but	signal	to	noise	ratio	is	>1	0:1
---	------------------	----------	---------	----	---------	-----	--------	----	-------	-------	----	----	-----

- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers
- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J[‡] Analyte concentration is below calibration range
- M Maximum possible concentration
- NP Not Provided
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection
- Analyte Not Detected
- + Spike levels were inappropriate versus the levels in the sample

[‡] "J" values are equivalent to DNQ (detected but not quantified) for California Toxics Rule (CTR)/National Pollutant Discharge Elimination System (NPDES) samples

EPA Method 1613/8290 Aqueous MDL (SPE Extraction)

Analyte	ML	MDL
2,3,7,8-TCDD	5.00	0.543
1,2,3,7,8-PeCDD	25.0	0.771
1,2,3,4,7,8-HxCDD	25.0	0.845
1,2,3,6,7,8-HxCDD	25.0	1.05
1,2,3,7,8,9-HxCDD	25.0	0.910
1,2,3,4,6,7,8-HpCDD	25.0	1.18
OCDD	50.0	2.26
2,3,7,8-TCDF	5.00	0.449
1,2,3,7,8-PeCDF	25.0	1.05
2,3,4,7,8-PeCDF	25.0	1.08
1,2,3,4,7,8-HxCDF	25.0	0.545
1,2,3,6,7,8-HxCDF	25.0	0.355
1,2,3,7,8,9-HxCDF	25.0	0.370
2,3,4,6,7,8-HxCDF	25.0	0.476
1,2,3,4,6,7,8-HpCDF	25.0	0.516
1,2,3,4,7,8,9-HpCDF	25.0	0.654
OCDF	50.0	1.22

Project 3015, extracted 1/6/05; analyzed 1/12/05. Based on a 1.0 Liter sample, pg/L.

EPA Method 1613 PCDD/F

FAL ID: 3646-001-MB Client ID: Method Blank Matrix: Aqueous Batch No: X0742

Date Extracted: 12-22-2005

Date Received: NA Amount: 1.000 L

95.3 35.0 - 197

ICal: PCDDFAL1-8-30-05 GC Column: DB5

Units: pg/L

Acquired: 12-23-2005 WHO TEQ: 0.00

Compound	Conc	DL	Qual	WHO Tox	Compound	Conc D	L Qual #Hom
2,3,7,8-TCDD	_	1.48		_			
1,2,3,7,8-PeCDD	_	2.20		_			
1,2,3,4,7,8-HxCDD	_	4.29		_			
1,2,3,6,7,8-HxCDD	_	3.87		_	Total Tetra-Dioxins	- 1.4	0 0
1,2,3,7,8,9-HxCDD	_	3.40		-	Total Penta-Dioxins	- 1.4 - 2.2	
1,2,3,4,6,7,8-HpCDD	_	3.24		-	Total Hexa-Dioxins	- 2.2 - 4.2	_
OCDD	-	4.95		-	Total Hepta-Dioxins	- 3.2	
					rotal riopta-blokins	- 3.2	4 0
2,3,7,8-TCDF	-	0.823		-			
1,2,3,7,8-PeCDF	-	2.28		-			
2,3,4,7,8-PeCDF	-	2.17		_			
1,2,3,4,7,8-HxCDF	-	1.26					
1,2,3,6,7,8-HxCDF		0.971		-			
2,3,4,6,7,8-HxCDF	-	1.24		_			
1,2,3,7,8,9-HxCDF	-	1.35		-	Total Tetra-Furans	- 0.82	3 0
1,2,3,4,6,7,8-HpCDF	-	1.85		_	Total Penta-Furans	- 2.2	
1,2,3,4,7,8,9-HpCDF	-	2.04			Total Hexa-Furans	- 1.3	
OCDF	-	3.42		-	Total Hepta-Furans	- 2.0	
						2.0	•
Internal Standards	% Rec	QC Limits	Qual				
13C-2,3,7,8-TCDD	82.2	25.0 - 164					
13C-1,2,3,7,8-PeCDD	91.7	25.0 - 181					
13C-1,2,3,4,7,8-HxCDD	73.2	32.0 - 141					
13C-1,2,3,6,7,8-HxCDD	72.0	28.0 - 130					
13C-1,2,3,4,6,7,8-HpCDD	75.2	23.0 - 140					
13C-OCDD	73.5	17.0 - 157					
13C-2,3,7,8-TCDF	86.4	24.0 - 169					
13C-1,2,3,7,8-PeCDF	88.0	24.0 - 185					
13C-2,3,4,7,8-PeCDF	91.6	21.0 - 178					
13C-1,2,3,4,7,8-HxCDF	82.3	26.0 - 152					
13C-1,2,3,6,7,8-HxCDF	79.9	26.0 - 123					
13C-2,3,4,6,7,8-HxCDF	79.5	28.0 - 136					
13C-1,2,3,7,8,9-HxCDF	82.7	29.0 - 147					
13C-1,2,3,4,6,7,8-HpCDF	81.5	28.0 - 143					
13C-1,2,3,4,7,8,9-HpCDF	76.6	26.0 - 138					
13C-OCDF	76.4	17.0 - 157					

Cleanup Surrogate 37CI-2,3,7,8-TCDD

Reviewed By:_ DPV

EPA Method 1613 PCDD/F

FAL ID: 3646-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X0742 Date Extracted: 12-22-2005 Date Received: NA Amount: 1.000 L ICal: PCDDFAL1-8-30-05 GC Column: DB5 Units: ng/ml Acquired: 12-23-2005 WHO TEQ: NA

Compound	Conc QC Limits
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	10.8 6.70 - 15.8 55.9 35.0 - 71.0 56.9 35.0 - 82.0 57.7 38.0 - 67.0 61.9 32.0 - 81.0 55.1 35.0 - 70.0 117 78.0 - 144
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	11.2 7.50 - 15.8 57.3 40.0 - 67.0 57.2 34.0 - 80.0 53.4 36.0 - 67.0 53.5 42.0 - 65.0 54.4 35.0 - 78.0 54.2 39.0 - 65.0 54.0 41.0 - 61.0 53.1 39.0 - 69.0 106 63.0 - 170
Internal Standards	% Rec QC Limits
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	78.1 20.0 - 175 92.5 21.0 - 227 77.9 21.0 - 193 73.8 25.0 - 163 81.0 26.0 - 166 83.2 13.0 - 198
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	87.7 22.0 - 152 92.7 21.0 - 192 95.9 13.0 - 328 79.8 19.0 - 202 79.4 21.0 - 159 81.0 22.0 - 176 85.3 17.0 - 205 81.0 21.0 - 158 83.8 20.0 - 186 89.9 13.0 - 198
Cleanup Surrogate	
37CI-2,3,7,8-TCDD	91.5 31.0 - 191

Reviewed By	: DN
Date:	12/28/2005

EPA Method 1613 PCDD/F

FAL ID: 3646-001-SA Client ID: MW-10 Matrix: Aqueous Batch No: X0742

Date Extracted: 12-22-2005 Date Received: 12-16-2005

Amount: 0.851 L

ICal: PCDDFAL1-8-30-05 GC Column: DB5

Units: pg/L

Acquired: 12-23-2005 WHO TEQ: 5640

Compound	Conc	DL	Qual	WHO Tox	Compound	Сопс	DL	Qual	#Hom
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	23.2 1850 20900 4970 279000 88000	1.11 - - - - -	J	23.2 185 2090 497 2790 8.800	Total Tetra-Dioxins Total Penta-Dioxins Total Hexa-Dioxins Total Hepta-Dioxins	20.3 907 299000 1040000			2 12 7 2
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	15.7 5.66 16.9 17:6 29.4 89.0 2410 54.2 7300	1.17]]]	0.787 2.83 1.69 1.76 2.94 8.90 24.1 0.542 0.730	Total Tetra-Furans Total Penta-Furans Total Hexa-Furans Total Hepta-Furans	125 268 2570 10500	-	D,M D,M D,M	12 13 14 4
Internal Standards	% Rec	QC Limits	Qual						

Internal Standards	% Rec	QC Limits	Qual
13C 2 3 7 8 TODD	07.4	050 (04	
13C-2,3,7,8-TCDD	67.4	25.0 - 164	
13C-1,2,3,7,8-PeCDD	82.0	25.0 - 181	
13C-1,2,3,4,7,8-HxCDD	62.3	32.0 - 141	
13C-1,2,3,6,7,8-HxCDD	63.0	28.0 - 130	
13C-1,2,3,4,6,7,8-HpCDD	91.4	23.0 - 140	
13C-OCDD	67.7		
	• • • • • • • • • • • • • • • • • • • •		
13C-2,3,7,8-TCDF	68.3	24.0 - 169	
13C-1,2,3,7,8-PeCDF	66.4	24.0 - 185	
13C-2.3.4.7.8-PeCDF	73.7	21.0 - 178	
13C-1,2,3,4,7,8-HxCDF	72.8	26.0 - 152	
13C-1,2,3,6,7,8-HxCDF	72.7	26.0 - 123	
13C-2,3,4,6,7,8-HxCDF	67.3	28.0 - 136	
13C-1,2,3,7,8,9-HxCDF	70.4	29.0 - 147	
13C-1,2,3,4,6,7,8-HpCDF	63.6	28.0 - 143	
13C-1,2,3,4,7,8,9-HpCDF	61.7	26.0 - 138	
13C-OCDF	64.5	17.0 - 157	

Cleanup Surrogate

37CI-2,3,7,8-TCDD

90.9 35.0 - 197

Sample Receipt

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 3646

Client:	Analytical Sciences
Client Project ID:	5121202
Date Received:	12/16/2005
Time Received:	09:45 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	1
Duplicates:	0
Storage Location:	R1

Method of Delivery:	California Overnight
Tracking Number:	516647358
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	2
Cooling Method	Blue Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test for residual Chlorine	Yes
Thiosulfate Added	No
Earliest Sample Hold Time Expiration	12/09/2006
Adequate Sample Volume	Yes
Anomalies or additional comments:	

Appendix C

Certificate of Disposal: IWM Job # 95579-DS: dated 19 January 2006 Certificate of Disposal: IWM Job # 95589-DW: dated 19 January 2006

INTEGRATED WASTESTREAM MANAGEMENT, INC. 950 AMES AVENUE, MILPITAS, CA 95035 PHONE: 408.942.8955 FAX: 408.942,1499

CERTIFICATE OF DISPOSAL

Generator Name:	Schmidbauer Lumber	Facility Name:	Schmidbauer Lumber
Address:	P.O. Box 152	Address:	1099 Waterfront Drive
	Eureka, CA 95501		Eureka, CA
Contact:	Mark Anderson	Facility Contact:	Amy Yardley, SCS Engineers
Phone:	707-443 - 7024	Phone:	707-546-9461

 IWM Job #:
 95579-DS

 Description of Waste:
 3 Drums of

 Non-Hazardous
 Soil

 Removal Date:
 01/19/06

 Ticket #:
 RSVRL190106

Transporter Information		Dispos	Disposal Facility Information	
Name: Address:	IWM, Inc. 950 Ames Avenue	Name: Address:	Republic Services Vasco Road Landfill 4001 N. Vasco Road	
Phone:	Milpitas, CA 95035 (408) 942-8955	Phone:	Livermore, CA 94550 (925) 447-0491	

IWM, INC. CERTIFIES THAT THE ABOVE LISTED NON-HAZARDOUS WASTE WILL BE TREATED AND DISPOSED AT THE DESIGNATED FACILITY IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS.

*******	William 2. Ca Form	
William T. DeLon	70,300	01/19/06
Authorized Repres	entative (Print Name and Signature)	Date

INTEGRATED WASTESTREAM MANAGEMENT, INC. 950 AMES AVENUE, MILPITAS, CA 95035 PHONE: 408.942.8955 FAX: 408.942.1499

CERTIFICATE OF DISPOSAL

Generator Name:	Schmidbauer Lumber	Facility Name:	Schmidbauer Lumber
Address:	P.O. Box 152	Address:	1099 Waterfront Drive
_	Eureka, CA 95501		Eureka, CA
Contact:	Mark Anderson	Facility Contact:	Amy Yardley, SCS Engineers
Phone:	707-443-7024	Phone:	707-546-9461

 IWM Job #:
 95580-DW

 Description of Waste:
 4 Drums of

 Non-Hazardous
 Water

 Removal Date:
 01/19/06

 Ticket #:
 SP190106-MISC

Transporter Information		Dispos	Disposal Facility Information	
Name: Address:	IWM, Inc. 950 Ames Avenue Milpitas, CA 95035	Name: Address:	Seaport Refining & Environmental 675 Seaport Blvd	
Phone:	(408) 942-8955	Phone:	Redwood City, CA 94063 (650) 364-1024	

IWM, INC. CERTIFIES THAT THE ABOVE LISTED NON-HAZARDOUS WASTE WILL BE TREATED AND DISPOSED AT THE DESIGNATED FACILITY IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS.

William T. DeLon William 2. C. For	
	01/19/06
Authorized Representative (Print Name and Signature)	Date